首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach to study dynamic interactions between transpiration and xylem pressure in intact plants is presented. Pressure probe measurements were preformed in living (immature) late metaxylem of maize roots rather than in adjacent mature xylem. This eliminated technical limitations related to the measurement of negative pressures. Water relations of single cells showed that turgor and volumetric elastic modulus were significantly larger in living metaxylem than in cortical cells; hydraulic conductivity was similar in both types of root cells. Increasing transpiration induced an immediate decrease of xylem pressure, and vice versa. Turgor in the living metaxylem could be continuously recorded for more than 1 h. The relationship between xylem pressure and transpiration yielded a root hydraulic resistance of 1.3 x 109 MPa s m-3. Control experiments indicated that the response of living xylem in the positive pressure range essentially paralleled that of mature root xylem in the negative range. In mature xylem, pressures as low as -0.55 MPa were recorded for short periods (several minutes). Several tests verified that the pressure probe was in contact with mature xylem during the measurements of tensions. The results demonstrate convincingly that transpiration generates an effective driving force for water uptake in roots, a central feature of the cohesion theory.Key words: Hydraulic conductivity, negative pressure, root development, turgor, water transport, Zea mays.   相似文献   

2.
The rise of sap in mangroves has puzzled plant physiologists for many decades. The current consensus is that negative pressures in the xylem exist which are sufficiently high to exceed the osmotic pressure of seawater (2.5 MPa). This implies that the radial reflection coefficients of the mangrove roots are equal to unity. However, direct pressure probe measurements in xylem vessels of the roots and stems of mangrove (Rhizophora mangle) grown in the laboratory or in the field yielded below-atmospheric, positive (absolute) pressure values. Slightly negative pressure values were recorded only occasionally. Xylem pressure did not change significantly when the plants were transferred from tap water to solutions containing up to 1700 mOsmol kg?1 NaCl. This indicates that the radial reflection coefficient of the roots for salt, and therefore the effective osmotic pressure of the external solution, was essentially zero as already reported for other halophytes. The low values of xylem tension measured with the xylem pressure probe were consistent with previously published data obtained using the vacuum/leafy twig technique. Values of xylem tension determined with these two methods were nearly two orders of magnitude smaller than those estimated for mangrove using the pressure chamber technique (?3 to ?6MPa). Xylem pressure probe measurements and staining experiments with alcian blue and other dyes gave strong evidence that the xylem vessels contained viscous, mucilage- and/or protein-related compounds. Production of these compounds resulting from wound or other artifactual reactions was excluded. The very low sap flow rates of about 20–50 cm h?1 measured in these mangrove plants were consistent with the presence of high molecular weight polymeric substances in the xylem sap. The presence of viscous substances in the xylem sap of mangroves has the following implications for traditional xylem pressure measurement techniques, development of xylem tension, and longdistance water transport: (1) high external balancing pressures in the pressure chamber are needed to force xylem sap to the cut surface of the twig; (2) stable tensions much larger than 0.1 MPa can be developed only occasionally because viscous solutions provide nucleation sites for gas bubble formation; (3) the frequent presence of small gas bubbles in viscous solutions allows water transport by interfacial, gravity-independent streaming at gas/water interfaces and (4) the increased density of viscous solutions creates (gravity-dependent) convectional flows. Density-driven convectional flows and interfacial streaming, but also the very low radial reflection coefficient of the roots to NaCl are apparently the means by which R. mangle maintains water transport to its leaves despite the high salinity of the environment.  相似文献   

3.
  • Positive sap pressures are produced in the xylem of birch trees in boreal conditions during the time between the thawing of the soil and bud break. During this period, xylem embolisms accumulated during wintertime are refilled with water. The mechanism for xylem sap pressurization and its environmental drivers are not well known.
  • We measured xylem sap flow, xylem sap pressure, xylem sap osmotic concentration, xylem and whole stem diameter changes, and stem and root non‐structural carbohydrate concentrations, along with meteorological conditions at two sites in Finland during and after the sap pressurisation period.
  • The diurnal dynamics of xylem sap pressure and sap flow during the sap pressurisation period varied, but were more often opposite to the diurnal pattern after bud burst, i.e. sap pressure increased and sap flow rate mostly decreased when temperature increased. Net conversion of soluble sugars to starch in the stem and roots occurred during the sap pressurisation period. Xylem sap osmotic pressure was small in comparison to total sap pressure, and it did not follow changes in environmental conditions or tree water relations.
  • Based on these findings, we suggest that xylem sap pressurisation and embolism refilling occur gradually over a few weeks through water transfer from parenchyma cells to xylem vessels during daytime, and then the parenchyma are refilled mostly during nighttime by water uptake from soil. Possible drivers for water transfer from parenchyma cells to vessels are discussed. Also the functioning of thermal dissipation probes in conditions of changing stem water content is discussed.
  相似文献   

4.
盐胁迫对大豆根系木质部压力和Na+吸收的影响   总被引:1,自引:0,他引:1  
取栽培大豆的水培幼苗为材料,用木质部压力探针和原子吸收分光光度计测定了盐胁迫条件下其根木质部压力和伤流液中Na~+含量的变化,以分析大豆抗盐吸水的机制.结果表明:在25~150 mmol/L NaCl的浓度范围内,随着盐胁迫强度的增加,大豆根木质部负压力的绝对值逐渐增大,但相对负压力和根的径向反射系数则逐渐减小;木质部伤流液中Na~+含量逐渐增加,但Na~+的相对含量则逐渐降低.同时,虽然根系吸水所需的木质部负压力(压力势)及根木质部伤流液的渗透势随着盐胁迫强度的增加都有所下降,但两者共同作用使木质部水势下降的幅度远远小于根外溶液水势(渗透势)下降的幅度,即随着根外溶液盐浓度的升高,根木质部溶液的总水势逐渐高出根外溶液的水势.上述结果说明,在盐胁迫下大豆可以利用相对小的木质部负压力逆水势梯度吸水,且通过避免对Na~+的过量吸收来适应盐胁迫环境.  相似文献   

5.
Most plant‐based emissions of volatile organic compounds are considered mainly temperature dependent. However, certain oxygenated volatile organic compounds (OVOCs) have high water solubility; thus, also stomatal conductance could regulate their emissions from shoots. Due to their water solubility and sources in stem and roots, it has also been suggested that their emissions could be affected by transport in the xylem sap. Yet further understanding on the role of transport has been lacking until present. We used shoot‐scale long‐term dynamic flux data from Scots pines (Pinus sylvestris) to analyse the effects of transpiration and transport in xylem sap flow on emissions of 3 water‐soluble OVOCs: methanol, acetone, and acetaldehyde. We found a direct effect of transpiration on the shoot emissions of the 3 OVOCs. The emissions were best explained by a regression model that combined linear transpiration and exponential temperature effects. In addition, a structural equation model indicated that stomatal conductance affects emissions mainly indirectly, by regulating transpiration. A part of the temperature's effect is also indirect. The tight coupling of shoot emissions to transpiration clearly evidences that these OVOCs are transported in the xylem sap from their sources in roots and stem to leaves and to ambient air.  相似文献   

6.
Summary Ten seedlings each of Eucalyptus kitsoniana Maiden and Eucalyptus globulus Labill. were subjected to two levels of water stress and two levels of nutrient stress (macro and micro-nutrients) in a greenhouse for 3 weeks. The objectives were to determine the degree to which seedlings show differences in sap chemistry, photosynthesis and transpiration that relate to the environments in which these two species live. Whole plants were then extracted for xylem sap using a pressure chamber and the sap was analyzed for 14 elements using an inductively coupled plasma spectrometer and a nitrometer. For E. kitsoniana water and nutrient stress, applied separately or in combination, significantly reduced leaf conductance, transpiration, photosynthesis and midday water potential. Nutrient stress alone had less effect than water stress on most functions measured. Water stress alone reduced the root/shoot ratio; the combination of water and nutrient stress increased the root/shoot ratio, primarily because of reduced shoot weight. In E. kitsoniana, water stress alone or in combination with nutrient stress increased the xylem sap concentrations of B and Si. Multi-nutrient stress alone, or in combination with water stress, significantly decreased sap Zn and K. For this species, sap N was decreased by nutrient stress, but increased by water stress. E. globulus had significantly lower transpiration rates and less root mass than E. kitsoniana. Slightly lower leaf conductance and photosynthesis were not significant in E. globulus compared to E. kitsoniana. Water and nutrient stress reduced conductance, transpiration (except for nutrient stress) and photosynthesis, and the effects of water stress on E. globulus were greater than the effects of nutrient stress. Midday water potential was reduced by water stress. Water or nutrient stress alone did not alter seedling root/shoot ratio, but the combination of water and nutrient stress significantly increased the root/shoot ratio for both species. For E. globulus, sap concentrations of Mn, Na, Si and K were increased by water stress (alone or in combination with nutrient stress). Sap N increased with water stress or combined stresses, but decreased under nutrient stress alone. When the two species were compared, E. globulus generally had lower or similar nutrient concentrations in the sap, with Ca, Mg, Mn and P significantly lower than in E. kitsoniana. Seedlings of these two species show strong site adaptations to water and nutrient availability.  相似文献   

7.
Calcium in Xylem Sap and the Regulation of its Delivery to the Shoot   总被引:7,自引:2,他引:5  
Amounts of total and free calcium in root and shoot xylem sapwere quantified for a number of species grown in comparableenvironments and in a rooting medium not deficient in calcium.The potential for the shoot to sequester calcium was also examined,along with the ability for ABA to regulate calcium flux to theleaf. Xylem sap calcium showed considerable interspecific and diurnalvariation, even though the plants were grown with similar rhizosphericcalcium concentrations. The potential for the shoot to sequesterxylem sap calcium was also highly variable between species andimplied an ability, at least in some species, to regulate thecalcium reaching the shoot in the transpiration stream. Long distance transport of calcium in the xylem was not primarilyby mass flow, because neither calcium uptake nor distributionwere closely related to water uptake or transpiration. The diurnalchanges in xylem sap total ion concentration appeared to benegatively correlated with transpiration while, in contrast,the calcium ion concentration showed two peaks, one occurringin the dark and the other in the light period. The application of ABA to roots caused an increase in the rateof exudation from the xylem of detopped well-watered plants.These experiments suggest that changes in root water relationsdriven by ionic fluxes were the likely cause for enhanced sapexudation from ABA-treated roots. The steady-state concentrationof calcium in the xylem sap was unaffected by ABA when exudationrate increased and, consequently, the flux of calcium must alsohave increased. Key words: Abscisic acid, calcium, xylem sap, ionic fluxes  相似文献   

8.
Cytokinins are predominantly root-born phytohormones which are distributed in the shoot via the xylem stream. In the hormone message concept they are considered as root signals mediating the transport of the photosynthates to the various sinks of a plant. In this paper the cytokinin relations of Urtica dioica L., the stinging nettle, are described, based on the daily flux from the roots to the shoot. Trans-zeatin-type cytokinins predominate in the various tissues of Urtica (Wagner and Beck, 1993), and accordingly trans-zeatin riboside and trans-zeatin are the forms transported by the xylem sap. The daily time-course of cytokinin concentration in root pressure exudates and in xylem sap collected from a petiole after pressurizing the root bed showed high concentrations in the morning, followed by a substantial drop to a level of 15–30% of the initial concentration which was then maintained during the afternoon. This time-course is interpreted as resulting from continuous synthesis and exudation of cytokinins into the xylem fluid of the roots whose cytokinin concentration is then modified by the dynamics of the transpiration stream. Loading of cytokinins into the xylem sap could be enhanced several times by increasing the flux rate of the xylem stream to the maximal transpiration rate when a maximum export rate was reached. The total daily cytokinin gain by the shoot depended on the nitrogen status of the plant. Roots of Urtica plants grown on a sufficient nitrogen supply had a significantly higher cytokinin content and exuded more cytokinins into the shoot than those of plants raised under nitrogen shortage. A positive correlation was found between the steady rates of cytokinin export measured during the afternoon and the shoot to root-ratios of biomass which, in turn, corresponded to the nitrogen status of the plants.  相似文献   

9.
We investigated if concentrations of abscisic acid (ABA) andother solutes measured in the first few droplets of xylem sapfrom detopped root systems, are good estimates of those in thetranspiration stream as it enters the shoot-base of whole plants.Xylem sap from root systems of pot-grown tomato plants (Lycopersiconesculentum Mill., cv. Ailsa Craig), at the seven-leaf stage,was obtained by placing root systems in chambers pressurizedto 0.3 MPa with air. The first sample was taken from the cut-surfaceof the hypo-cotyl stump within 30 s of removing the shoot. ABA,sucrose and other osmolytes were more concentrated in the initial100–200 mm3 of xylem sap than in subsequent samples. Thissuggested the sap was contaminated and not unchanged transpirationfluid. The effect was reproduced on the same plant, severaltimes, by recutting the hypocotyl prior to reassembling thesap collecting set-up and repressurizing. Similar results werefound with castor-oil plants (Ricinus communis L., cv. Gibsonii).However, neither release of ABA from the cut surface of thehypocotyl stump, nor the effects of pressure to the roots causedthe contamination. Instead, small radial pressures exerted bya rubber sleeve attached to the hypocotyl stump, for collectingthe sap, were responsible. The effect was reproduced by lightlysqueezing the hypocotyl by hand. The possibility was examined that reliable estimates of ABAconcentrations in transpiration stream fluid may be obtainedfrom sap samples taken immediately after rejecting the initial,contaminated 200 mm3. However, ABA concentrations in these latersamples were also unsatisfactory since they changed with rateof sap flow. The problem may be overcome by analysing sap inducedto flow through detached root systems at rates close to thoseof whole-plant transpiration. Key words: Tomato, Lycopersicon esculentum Mill., Castor-oil plant, Ricinus communis L., roots, root to shoot communication, xylem sap, abscisic acid, sucrose, transpiration stream  相似文献   

10.
A New Theory for the Ascent of Sap--Cohesion Supported by Tissue Pressure   总被引:9,自引:0,他引:9  
Canny  Martin J. 《Annals of botany》1995,75(4):343-357
Recent work contradicting both the assumptions of the CohesionTheory, and the tensions measured in the xylem sap by the pressure-chamber,is reviewed. Measurements with the xylem-pressure probe revealpressures in vessels around 0 bar absolute, and no detectablegradients of pressure with tree height. Under high water stress,pressures down to -6 bar were found, but then cavitations occurredvery readily. Also, measurements of the cavitation thresholdsof water show an average threshold of about -2 bar. The uncertainfoundations of the Cohesion Theory are recalled from the yearsbefore 1965. Soon after that date, Scholander's measurementswith the pressure chamber were agreed to have confirmed thetheory and the existence of high tensions in the xylem. Before1965, many experiments over many years pointed to the conclusionsnow rediscovered, viz., no high tensions, and no gradients oftension. A resolution of these paradoxes is offered in the formof a new theory. This proposes that the driving force and thetransmission of the force are the same as in the Cohesion Theory,but the operating pressure of the xylem is raised into a stablerange by compensating tissue pressures pressing upon the trachearyelements. The tissue pressure does not propel the transpirationstream, which is still driven by evaporation, but protects thestream from cavitation. Evidence is presented for the existenceof positive pressures in roots, wood, and leaves. It is shownthat the anatomy of roots, wood, and monocotyledon and cryptogamvascular bundles is organized so that pressure is confined bymechanical barriers, and exerted upon the tracheary elementsby the living cells of the phloem and the xylem parenchyma.The Compensating-Pressure Theory also explains, among otherthings, root pressure, the function of the endodermis, the structureof wood, the constant association of xylem and phloem, the absenceof gas spaces in vascular tissue, the absence of a gravitationalgradient in the xylem, bleeding from cut palm inflorescences,how insects are able to withdraw sap from the xylem, and thevariable that is measured by the pressure chamber. This instrumentmeasures the water potential, but this is the potential notof xylem in tension, but of the compensating pressure appliedto the xylem. The requirements of the Theory are explained,and a number of predictions are made which are open to experimentaltesting.Copyright 1995, 1999 Academic Press Ascent of sap, cavitation, cohesion theory, endodermis, pressure chamber, root pressure, stem pressure, tissue pressure, transpiration, water potential, wood anatomy, xylem pressure  相似文献   

11.
Some predictions of the recently proposed theory of long-distance water transport in plants (the Compensating Pressure Theory) have been verified experimentally in sunflower leaves. The xylem sap cavitates early in the day under quite small water stress, and the compensating pressure P (applied as the tissue pressure of turgid cells) pushes water into embolized vessels, refilling them during active transpiration. The water potential, as measured by the pressure chamber or psychrometer, is not a measure of the pressure in the xylem, but (as predicted by the theory) a measure of the compensating pressure P. As transpiration increases, P is increased to provide more rapid embolism repair. In many leaf petioles this increase in P is achieved by the hydrolysis of starch in the starch sheath to soluble sugars. At night P falls as starch is reformed. A hypothesis is proposed to explain these observations by pressure-driven reverse osmosis of water from the ground parenchyma of the petiole. Similar processes occur in roots and are manifested as root pressure. The theory requires a pump to transfer water from the soil into the root xylem. A mechanism is proposed by which this pump may function, in which the endodermis acts as a one-way valve and a pressure-confining barrier. Rays and xylem parenchyma of wood act like the xylem parenchyma of petioles and roots to repair embolisms in trees. The postulated root pump permits a re-appraisal of the work done by evaporation during transpiration, leading to the proposal that in tall trees there is no hydrostatic gradient to be overcome in lifting water. Some published observations are re-interpreted in terms of the theory: doubt is cast on the validity of measurements of hydraulic conductance of wood; vulnerability curves are found not to measure the cavitation threshold of water in the xylem, but the osmotic pressure of the xylem parenchyma; if measures of xylem pressure and of hydraulic conductance are both suspect, the accepted view of the hydraulic architecture of trees needs drastic revision; observations that xylem feeding insects feed faster as the water potential becomes more negative are in accord with the theory; tyloses, which have been shown to form in vessels especially vulnerable to cavitation, are seen as necessary for the maintenance of P, and to conserve the supplementary refilling water. Far from being a metastable system on the edge of disaster, the water transport system of the xylem is ultrastable: robust and self-sustaining in response to many kinds of stress.  相似文献   

12.
Ian C. Dodd 《Plant and Soil》2005,274(1-2):251-270
An important mediator of shoot physiological processes can be the supply of signal molecules (other than water and nutrients) from the root system. Root-to-shoot signalling is often considered to be important in regulating shoot growth and water use when soil conditions change without any demonstrable change in shoot water or nutrient status. Changes in xylem sap composition are often thought to be synonymous with changes in root-to-shoot signalling, even though there is considerable re-cycling of compounds between xylem and phloem. Techniques used to collect xylem sap are reviewed. Elucidating the roles of putative root signal molecules in planta has usually taken priority over identifying the sources of signal molecules in xylem sap. The roles of several signal molecules are considered. This choice is selective, and the failure of known signals to account for observed physiological changes in some systems has lead to the conclusions that other novel signals can be important. The efficacy of a given signal molecule can depend on the shoot water and nutrient status, as demonstrated by variation in stomatal responses to abscisic acid. If such variation is widespread in crop species, this may have implications for the increasing intentional use of root-to-shoot signals to modify crop water use and shoot architecture. Research into root-to-shoot signalling may become increasingly reductionist, in trying to evaluate the contribution of root signals versus local processes to observed physiological changes. However, future challenges are to successfully integrate this basic research into improved crop production systems.  相似文献   

13.
The radial electrical potential difference between the root xylem and the bathing solution, i.e. the so-called trans-root potential, was measured in intact maize and wheat plants using a xylem pressure probe into which an Ag/AgCl electrode was incorporated. Besides other advantages (e.g. detection and removal of tip clogging; determination of the radial root resistance), the novel probe allowed placement of the electrode precisely in a single xylem vessel as indicated by the reading of sub-atmospheric or negative pressure values upon penetration. The trans-root potentials were of the order of 0 to – 70 mV and + 40 to – 20 mV for 2- to 3-week-old maize and wheat plants, respectively. Osmotic experiments performed on maize demonstrated that addition of 100 mM mannitol to the solution resulted in a decrease of xylem pressure associated with a slow, but continuous depolarization. The depolarization was reversible upon removal of the mannitol. For wheat plants it could be shown that the oscillations of the xylem pressure described recently by Schneider et al. (1997, Plant, Cell and Environment 20, 221–229) were accompanied by (rectangular, saw-tooth and/or U-shaped) oscillations in the trans-root potential (but not by corresponding changes of the membrane potential of the cortical cells measured simultaneously with conventional microelectrodes). Increase of the light intensity (up to 550 μmol m–2 s–1) resulted in a drop of the xylem pressure in wheat, whereas the trans-root potential showed a biphasic response: first hyperpolarization (by about 10 mV) was observed, followed by depolarization (by up to about + 40 mV). Similar light-induced biphasic (but often less pronounced) changes in the trans-root potential were also recorded for maize plants. Most interestingly, the response of the trans-root potential was always faster (by about 1–3 min) than the response of the xylem pressure upon illumination, suggesting that changes in the transpiration rate are reflected very quickly in the electrical properties of the root tissue. The impact of this and other findings on long-distance transport of solutes and water as well as on long-distance signalling is discussed.  相似文献   

14.
Salicylic acid (SA) and its glucoside (SAG) were detected in xylem sap of Brassica napus by HPLC–MS. Concentrations of SA and SAG in xylem sap from the root and hypocotyl of the plant, and in extracts of shoots above the hypocotyl, increased after infection with the vascular pathogen Verticillium longisporum. Both concentrations were correlated with disease severity assessed as the reduction in shoot length. Furthermore, SAG levels in shoot extracts were correlated with the amount of V. longisporum DNA in the hypocotyls. Although the concentration of SAG (but not SA) in xylem sap of infected plants gradually declined from 14 to 35 days post infection, SAG levels remained significantly higher than in uninfected plants during the whole experiment. Jasmonic acid (JA) and abscisic acid (ABA) levels in xylem sap were not affected by infection with V. longisporum. SA and SAG extend the list of phytohormones potentially transported from root to shoot with the transpiration stream. The physiological relevance of this transport and its contribution to the distribution of SA in plants remain to be elucidated.  相似文献   

15.
Spring filling of xylem vessels in wild grapevine   总被引:34,自引:2,他引:32       下载免费PDF全文
Xylem vessels in grapevines Vitis labrusca L. and Vitis riparia Michx. growing in New England contained air over winter and yet filled with xylem sap and recovered their maximum hydraulic conductance during the month before leaf expansion in late May. During this period root pressures between 10 and 100 kilopascals were measured. Although some air in vessels apparently dissolved in ascending xylem sap, results indicated that some is pushed out of vessels and then out of the vine. Air in the vessel network distal to advancing xylem sap was compressed at about 3 kilopascals; independent measurements indicated this was sufficient to push air across vessel ends, and from vessels to the exterior through dead vine tips, inflorescence scars, and points on the bark. Once wetted, vessel ends previously air-permeable at 3 kilopascals remained sealed against air at pressures up to 2 and 3 megapascals. Permeability at 3 kilopascals was restored by dehydrating vines below −2.4 megapascals. We suggest that the decrease in permeability with hydration is due to formation of water films across pores in intervascular pit membranes; this water seal can maintain a pressure difference of roughly 2 megapascals, and prevents cavitation by aspirated air at xylem pressures less negative than −2.4 megapascals.  相似文献   

16.
Maintaining the activity and function of the shallow root system of plants is essential for withstanding drought stress, but the associated mechanism is poorly understood. By investigating sap flow in 14 lateral roots (LRs) randomly selected from trees of a Chinese white poplar (Populus tomentosa) plantation receiving three levels of irrigation, an unknown root water transport mode of simultaneous daytime bi-directional water flow was discovered. This mode existed in five LRs confined to the surface soil without attached sinker roots. In the longer term, the bi-directional water flow was correlated with the soil water content. However, within the day, it was associated with transpiration. Our data demonstrated that bi-directional root sap flow occurred during the day, and was driven by evaporative demand, further suggesting the existence of circumferential water movement in the LR xylem. We named this phenomenon evaporation-driven hydraulic redistribution (EDHR). A soil-root water transport model was proposed to encapsulate this water movement mode. EDHR may be a crucial drought-tolerance mechanism that allows plants to maintain shallow root survival and activity by promoting root water recharge under extremely dry conditions.  相似文献   

17.
The wet and dry seasons in tropical rain forests can differ in precipitation, soil moisture and irradiance more significantly than often assumed. This could potentially affect the water relations of many tree species that may exhibit either increased transpiration in the dry season as a response to the increased irradiance or decreased transpiration as a result of decreases in soil moisture and increases in atmospheric vapor pressure deficit (VPD). Atmospheric data, soil moisture data and sap fluxes in Iriartea deltoidea palms were measured in eastern Ecuador during the wet and dry seasons. There were no differences between total daily sap fluxes in I. deltoidea palms during the wet and dry seasons; however, evaporative demand was significantly higher in the dry season and therefore, transpiration was more restricted by stomatal closure during the dry season than the wet season. This is likely the result of larger atmospheric VPD during the dry season compared with the wet season and possibly the result of reduced soil moisture availability. Additionally, based on published tree abundances in this area, measured sap fluxes in I. deltoidea were scaled up to the hectare level. Transpiration from I. deltoidea palms was estimated to be around 0.03 mm/d, which could represent about 1 percent of total transpiration in this area of the Amazon rain forest. If climate change predictions for more lengthy tropical dry periods are realized, greater stomatal control of dry-season sap flux has the potential to become even more prevalent in tropical species.  相似文献   

18.
Root pressure was measured continuously over spring in eight clonal kiwifruit rootstocks selected from seven Actinidia species (A. chrysantha, A. deliciosa, A. eriantha, A. hemsleyana, A. kolomikta, A. macrosperma, A. polygama), using pressure transducers and miniature compression fittings. Rootstocks that promoted scion vigour developed root pressures up to 0.15 MPa before or during scion budburst, whereas those that reduced scion vigour developed root pressure up to 0.05 MPa only after scion shoot expansion. When several seasons were compared, the date of onset of root pressure and the magnitude of pressure achieved were consistent for each rootstock. Root pressure was first recorded between late July and early September in vigour-promoting rootstocks, while scion budburst and initial shoot growth were in late August and early September. Vigour-reducing rootstocks did not develop significant root pressure until October. The date of onset was similar for the grafted rootstock and ungrafted plant of the same clone, but was not clearly related to the timing of shoot growth by the ungrafted plant. In the grafted plants the leaf and xylem water potentials of the scion were more negative, midday turgor was 0.3-0.5 MPa lower, and wilting was sometimes observed in developing shoots growing on low-vigour rootstocks, indicating that water stress was contributing to reductions in growth. Leaf turgor was correlated with average root pressure but not pressure measured during the day, suggesting that root pressure was not supporting transpiration during peak flows and was, instead, indicative of higher root hydraulic conductance. The rapid temporal rise in root pressure observed each spring in the various rootstocks was not accompanied by changes in xylem sap solute potential, but when rootstock clones were compared those that developed higher root pressures had higher sap solute potentials. Xylem sap solute potential varied between rootstocks from -0.07 MPa to -0.15 MPa, while root pressures measured at the same time varied between 0.0 MPa and 0.09 MPa, suggesting that an osmotic mechanism could account for the observed root pressure. Differences in phenology between the rootstocks and scion appeared to account for the rootstock effects on shoot growth, and changes in root pressure provided a useful indication of seasonal changes in root hydraulic properties and solute transport behaviour.  相似文献   

19.
Collection of cucurbit exudates from cut petioles has been a powerful tool for gaining knowledge on phloem sap composition without full notion of the complex exudation mechanism. Only few publications explicitly mentioned that exudates were collected from the basal side of the cut, which exudes more copiously than the apical side. This is surprising since only exudation from the apical side is supposedly driven by phloem pressure gradients. Composition of carbohydrates and pH values at both wounding sides are equal, whereas protein concentration is higher at the basal side. Apparently, exudation is far more complex than just the delivery of phloem sap. Xylem involvement is indicated by lower protein concentrations after elimination of root pressure. Moreover, dye was sucked into xylem vessels owing to relaxation of negative pressure after cutting. The lateral water efflux from the vessels increases turgor of surrounding cells including sieve elements. Simultaneously, detached parietal proteins (PP1/PP2) induce occlusion of sieve plates and cover wound surface. If root pressure is strong enough, pure xylem sap can be collected after removal of the occlusion plug at the wound surface. The present findings provide a mechanism of sap exudation in Cucurbita maxima, in which the contribution of xylem water is integrated.  相似文献   

20.
Transpiration inhibition by stored xylem sap from well-watered maize plants   总被引:3,自引:0,他引:3  
There is increasing evidence that a chemical signal exists in xylem sap of plants subjected to water deficits which influences physiological responses in plant shoots. An important method of studying this signal is the transpiration response of excised leaves exposed to xylem sap collected from plants. However, Munns et al [Plant, Cell & Environment 16, 867–877] cautioned that transpiration inhibition is observed when xylem sap collected from wheat and barley is stored before determining physiological activity. The objective of the study reported here was to determine if transpiration inhibition develops in maize sap collected from well-watered plants when the sap is stored under various conditions. It was found that storage of maize sap collected from well-watered plants for only 1 d at -20°C resulted in the development of substantial transpiration inhibition in bioassay leaves. Storage of sap at 4°C resulted in the development of the effect after 2 weeks, while storage at ?86°C showed only small transpiration inhibition after 3 weeks. The major source of the transpiration inhibition was the development of a substance in the stored sap that resulted in physical blockage of the transpiration stream in bioassay leaves. However, a small signal component may also have developed in the stored sap. Because of the possibility of ionic activity under freezing conditions at ?20°C, calcium was studied for its potential involvement in the transpiration inhibition. However, the calcium concentrations found to inhibit transpiration were nearly an order of magnitude larger than the calcium concentrations observed in xylem sap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号