首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landscape genetics aims to investigate functional connectivity among wild populations by evaluating the impact of landscape features on gene flow. Genetic distances among populations or individuals are generally better explained by least-cost path (LCP) distances derived from resistance surfaces than by simple Euclidean distances. Resistance surfaces reflect the cost for an organism to move through particular landscape elements. However, determining the effects of landscape types on movements is challenging. Because of a general lack of empirical data on movements, resistance surfaces mostly rely on expert knowledge. Habitat-suitability models potentially provide a more objective method to estimate resistance surfaces than expert opinions, but they have rarely been applied in landscape genetics so far. We compared LCP distances based on expert knowledge with LCP distances derived from habitat-suitability models to evaluate their performance in landscape genetics. We related all LCP distances to genetic distances in linear mixed effect models on an empirical data set of wolves (Canis lupus) from Italy. All LCP distances showed highly significant (P ≤ 0.0001) standardized β coefficients and R 2 values, but LCPs from habitat-suitability models generally showed higher values than those resulting from expert knowledge. Moreover, all LCP distances better explained genetic distances than Euclidean distances, irrespective of the approaches used. Considering our results, we encourage researchers in landscape genetics to use resistance surfaces based on habitat suitability which performed better than expert-based LCPs in explaining patterns of gene flow and functional connectivity.  相似文献   

2.
Studies of genetic differentiation in fragmented environments help us to identify those landscape features that most affect gene flow and dispersal patterns. Particularly, the assessment of the relative significance of intrinsic biological and environmental factors affecting the genetic structure of populations becomes crucial. In this work, we assess the current dispersal patterns and population structure of Ctenomyschasiquensis”, a vulnerable and endemic subterranean rodent distributed on a small area in Central Argentina, using 9 polymorphic microsatellite loci. We use landscape genetics approaches to assess the relationship between genetic connectivity among populations and environmental attributes. Our analyses show that populations of C. “chasiquensis” are moderately to highly structured at a regional level. This pattern is most likely the outcome of substantial gene flow on the more homogeneous sand dune habitat of the Northwest of its distributional range, in conjunction with an important degree of isolation of eastern and southwestern populations, where the optimal habitat is surrounded by a highly fragmented landscape. Landscape genetics analysis suggests that habitat quality and longitude were the environmental factors most strongly associated with genetic differentiation/uniqueness of populations. In conclusion, our results indicate an important genetic structure in this species, even at a small spatial scale, suggesting that contemporary habitat fragmentation increases population differentiation.  相似文献   

3.
Understanding patterns of genetic diversity at the landscape scale will enhance conservation and management of natural populations. Here we analyzed the genetic diversity, population connectivity, and spatial genetic structure among subpopulations and age groups of Olea europaea subsp. cuspidata, a cornerstone species of the Afromontane highlands. The study was conducted at the landscape level within a radius of approximately 4 km, as well as on a fine scale (intensive study plot) of less than 300 m radius. In total 542 samples from four natural subpopulations in northwestern Ethiopia were analyzed using ten nuclear microsatellite markers. Inbreeding was higher in smaller populations. No genetic difference was detected among cohorts of different tree sizes in the intensive studied plot. Average population differentiation was low but significant (F ST ?=?0.016). Landscape genetic analysis inferred two groups: the most distant subpopulation WE located less than 4 kms from the other three subpopulations formed a separate group. Sixty-four percent of the total migrants were shared among the three latter subpopulations, which are spatially clustered. Immigrants were non-randomly distributed inside of the intensive study plot. Significant spatial genetic structure (SGS) was found both at the landscape scale and in the intensive study plot, and adults showed stronger SGS than young trees. An indirect estimate of 220 m as mean gene dispersal distance was obtained. We conclude that even under fragmentation migration is not disrupted in wild olive trees and that large protected populations at church forests are very important to conserve genetic resources. However, the higher level of inbreeding and evidence for population bottlenecks in the small populations, as well as the persisting heavy pressure on most remaining populations, warrants quick action to maintain genetic diversity of wild olive in the Ethiopian highlands.  相似文献   

4.
5.
The article presents the genetic parameters of the populations of lizards of the Darevskia raddei complex (D. raddei nairensis and D. raddei raddei) and the populations of D. valentini calculated on the basis of the analysis of variability of 50 allelic variants of the three nuclear genome microsatellite-containing loci of 83 individuals. It was demonstrated that the Fst genetic distances between the populations of D. raddei nairensis and D. raddei raddei were not statistically significantly different from the Fst genetic distances between the populations of different species, D. raddei and D. valentini. At the same time, these distances were statistically significantly higher than the Fst distances between the populations belonging to one species within the genus Darevskia. These data suggest deep divergence between the populations of D. raddei raddei and D. raddei nairensis of the D. raddei complex and there arises the question on considering them as separate species.  相似文献   

6.
Historical events such as colonisation, spatial distribution across different habitats, and contemporary processes, such as human-mediated habitat fragmentation can leave lasting imprints on the population genetics of a species. Orchids currently comprise 17% of threatened flora species in Australia (Environment Protection and Biodiversity Conservation Act 1999) due to the combination of fragmentation and illegal harvesting (Benwell in Recovery plan, swamp orchids Phaius australis, Phaius tancarvilliae, NSW National Parks and Wildlife Service, Sydney, 1994; Jones in A complete guide to native orchids of Australia including the island territories, 2nd edn, Reed Natural History, Sydney, 2006; DE in Phaius australis in species profile and threats database, Department of the Environment. http://www.environment.gov.au/sprat, 2015). The federally endangered Swamp Orchid Phaius australis has a disjunct distribution across an almost 2000 km latitudinal range along Australia’s east coast but it was estimated that 95% of the populations have been lost since European settlement (Benwell 1994). Phaius australis is endangered due to illegal collection and habitat loss that has resulted in limited connectivity between populations, in ecosystems that are vulnerable to climate change. Thus the genetic impacts of its history combined with more recent fragmentation may have impacts on its future viability especially in light of changing environmental conditions. Thirty-four populations were sampled from tropical north Queensland to the southern edge of the subtropics in New South Wales. Population genetics analysis was conducted using 13 polymorphic microsatellite markers developed for the species using NextGen sequencing. Spatial genetic patterns indicate post-colonisation divergence from the tropics southwards to its current climate niche limits. Genetic diversity is low across all populations (A?=?1.5, H e  = 0.171), and there is little evidence of genetic differentiation between regions. Consistent with population genetic theory, the historic loss of populations has resulted in significantly lower genetic diversity in small populations compared to large (P, A, He; p?<?0.05). The viability and persistence of P. australis populations now and in a changing climate are discussed in the context of conservation priorities.  相似文献   

7.
We carried out an allozyme analysis to investigate polymorphism and genetic structure of the populations of D. incarnata and D. ochroleuca in regions of their joint growth in Russia and Belarus. We found that D. ochroleuca individuals in the populations of the Urals and Siberia, which are distant fragments from the main range of the species, do not differ significantly from individuals within the main part of the area (Belarus) on the basis of the allelic composition of eight gene loci. We revealed that D. ochroleuca and D. incarnata are differentiated by different alleles of the GDH locus. Thus, we established a genetic marker suitable to distinguish these closely related taxa. In addition to the GDH locus, D. ochroleuca and D. incarnata in the places of their joint growth, differ in the allelic structure of the PGI and NADHD loci. D. incarnata from the Urals and Siberia were polymorphic for both loci, and individuals from Belarus were polymorphic for one locus (PGI). In contrast, all D. ochroleuca individuals growing in sympatric populations with polymorphic D. incarnata were homozygous for the same alleles. Thus, comparison of the genetic structure of D. ochroleuca and D. incarnata points to the existence of a genetic isolation and a functioning isolation mechanism even under conditions of their joint growth. We found that the GDH locus in D. incarnata is polymorphic only in populations which grow together with D. ochroleuca, with exception a few examples. Thus, we conclude that variability of the GDH locus in D. incarnata is associated with hybridization with D. ochroleuca.  相似文献   

8.
The results of studying the polymorphism and genetic structure of populations of D. salina and D. incarnata growing in Zabaykalsky krai and Buryatia are represented according to the data of allozyme analysis of eight genetic loci (PGI, NADHD, SKDH, GDH, PGM, DIA, ADH, and IDH). The specificity of the allelic structure of loci SKDH, PGM, and IDH is established, for which D. salina and D. incarnata reliably differ from each other. It is shown that interspecies introgressive hybrid complexes with different genetic structures were formed in Transbaikalia. Places of mass growth of D. incarnata were observed to have single plants of D. salina, the interspecies hybrids of the first and subsequent generations. Places of mass growth of D. salina were observed to contain only the hybrids that are not hybrids of the first generation. They were heterozygous not for three loci with differentiating alleles of both parents, SKDH, PGM, and IDH, but for only one of them. The degree of genetic differentiation among five populations of D. salina was on average 7.5% and that of D. incarnata was 7.1%, which in accordance with Wright’s estimation relates to mean values. The average value of FST for all studied populations of the two related species of the genus Dactylorhiza was 0.478, indicating a very high degree of genetic differentiation between D. salina and D. incarnata growing in Transbaikalia. The greatest differences between the species are for the allelic structure of loci SKDH, PGM, and IDH (FST was equal to 0.705, 0.976, and 0.762, respectively). Analysis of molecular variance (AMOVA) showed that populations of D. salina and D. incarnata in the zone where their ranges in Zabaykalsky krai and Buryatya overlap have essential differences both for the variation of alleles frequencies of eight loci (71%, d.f. = 9) and for the variability of genotypes (61%, d.f. = 9). Despite the fact that D. salina and D. incarnata explicitly share a gene flow as a result of interspecies hybridization, the genetic differentiation of populations of these related species remains at a high level.  相似文献   

9.
An emerging insight in invasion biology is that intra-specific genetic variation, human usage, and introduction histories interact to shape genetic diversity and its distribution in populations of invasive species. We explore these aspects for the tree species Paraserianthes lophantha subsp. lophantha, a close relative of Australian wattles (genus Acacia). This species is native to Western Australia and is invasive in a number of regions globally. Using microsatellite genotype and DNA sequencing data, we show that native Western Australian populations of P. lophantha subsp. lophantha are geographically structured and are more diverse than introduced populations in Australia (New South Wales, South Australia, and Victoria), the Hawaiian Islands, Portugal, and South Africa. Introduced populations varied greatly in the amount of genetic diversity contained within them, from being low (e.g. Portugal) to high (e.g. Maui, Hawaiian Islands). Irrespective of provenance (native or introduced), all populations appeared to be highly inbred (F IS ranging from 0.55 to 0.8), probably due to selfing. Although introduced populations generally had lower genetic diversity than native populations, Bayesian clustering of microsatellites and phylogenetic diversity indicated that introduced populations comprise a diverse array of genotypes, most of which were also identified in Western Australia. The dissimilarity in the distribution and number of genotypes in introduced regions suggests that non-native populations originated from different native sources and that introduction events differed in propagule pressure.  相似文献   

10.
Examining historical and contemporary processes underlying current patterns of genetic variation is key to reconstruct the evolutionary history of species and implement conservation measures promoting their long-term persistence. Combining phylogeographic and landscape genetic approaches can provide valuable insights, especially in regions harboring high levels of biodiversity that are currently threatened by climate and land cover changes, like southern Iberia. We used genetic (mtDNA and microsatellites) and spatial data (climate and land cover) to infer the evolutionary history and contemporary genetic connectivity in a short-range endemic salamander subspecies, Salamandra salamandra longirostris, using a combination of ecological niche modelling, phylogeographic, and landscape genetic analyses. Ecological-based analyses support a role of the Guadalquivir River Basin as a major vicariant agent in this taxon. The lower genetic diversity and greater differentiation of peripheral populations, together with analyses of climatically stable areas throughout time, suggest the persistence of a population in the central part of the current range since the Last Inter Glacial [LIG; ~?120,000–140,000 years BP], and a micro refugium in the eastern end of the range. Habitat heterogeneity plays a major role in shaping patterns of genetic differentiation in S. s. longirostris, with forests representing key areas for its long-term persistence under scenarios of environmental change. Our study stresses the importance of maintaining population genetic connectivity in low-dispersal organisms under rapidly changing environments, and will inform management plans for the long-term survival of this evolutionarily distinct Mediterranean endemic.  相似文献   

11.
Recent advances in landscape ecology have revealed the importance of landscape structure on insect species diversity and composition. We investigated how landscape structure and land use influence species compositions of Cheilosia and Merodon (Diptera: Syrphidae); two phytophagus genera of hoverflies. Our study shows that Shannon’s Diversity Index, Connectance Index, Grazing Intensity, Mean Fractal Dimension Index and Percentage of Agricultural Patches explained 38.6% of the variance in species composition at a 2 km scale, with the total ordination being significant (P?=?0.04, Monte Carlo test, 499 permutations). Merodon and Cheilosia species differ in their responses to land-use change and connectivity, with the latter genus being positively correlated with connectivity and negatively correlated with all other variables. We conclude that connectivity is the primary factor affecting Cheilosia, while most Merodon species demonstrated greater resistance to changes in human-modified ecosystems. Our results suggest that different management efforts, focused on land-use intensity (grazing) or connectivity, seem to be appropriate when trying to conserve these taxa.  相似文献   

12.
Phylogeographic barriers, together with habitat loss and fragmentation, contribute to the evolution of a species’ genetic diversity by limiting gene flow and increasing genetic differentiation among populations. Changes in connectivity can thus affect the genetic diversity of populations, which may influence the evolutionary potential of species and the survival of populations in the long term. We studied the genetic diversity of the little known Northern rufous mouse lemur (Microcebus tavaratra), endemic to Northern Madagascar. We focused on the population of M. tavaratra in the Loky–Manambato region, Northern Madagascar, a region delimited by two permanent rivers and characterized by a mosaic of fragmented forests. We genotyped 148 individuals at three mitochondrial loci (D-loop, cytb, and cox2) in all the major forests of the study region. Our analyses suggest that M. tavaratra holds average genetic diversity when compared to other mouse lemur species, and we identified two to four genetic clusters in the study region, a pattern similar to that observed in another lemur endemic to the region (Propithecus tattersalli). The main cluster involved samples from the two mountain forests in the study region, which were connected until recently. However, the river crossing the study region does not appear to be a strict barrier to gene flow in M. tavaratra. Finally, the inferred demographic history of M. tavaratra suggests no detectable departure from stationarity over the last millennia. Comparisons with codistributed species (P. tattersalli and two endemic rodents, Eliurus spp.) suggest both differences and similarities in the genetic clusters identified (i.e., barriers to species dispersal) and in the inferred demographic history. These comparisons suggest that studies of codistributed species are important to understand the effects of landscape features on species and to reconstruct the history of habitat changes in a region.  相似文献   

13.
The cognizing of connectivity among small mammal populations across heterogeneous landscapes is complicated due to complex influences of landscape and anthropogenic factors on gene flow. A landscape genetics approach offers inferences on how landscape features drive population structure. Through a landscape genetics approach, we investigated influences of geographical, environmental, and anthropogenic features on populations of Apodemus agrarius, the striped field mouse, the prime vector of hemorrhagic fever by a landscape genetic approach. We identified landscape features that might affect the population structure of striped field mice by analyzing microsatellite markers of 197 striped field mice from 21 populations throughout South Korea. We developed Maximum-likelihood population effects models based on landscape distances and resistance matrices and pairwise FST values for meta-populations of striped field mouse. We also conducted Mantel and partial Mantel tests to investigate geographic patterns of genetic similarities. In Mantel and partial Mantel tests, the FST was significantly correlated with all three models of movement; movement cost, Euclidian distance and least-cost distance, although the magnitudes of correlations varied. The 4 top-ranked models included three variables; temperature, precipitation and one human disturbance factor (population). We did not attain a significant effect for anthropogenic factors on genetic similarities among populations in the Korean striped field mouse, but we confirmed a significant association for genetic similarity with climatic features (temperature and precipitation).  相似文献   

14.
Given the impact of climate change on the availability of water resources, it becomes necessary the use of plant species well suited to planting on dryland sites. Eucalyptus cladocalyx, a native tree of South Australia, is capable of growing under relatively dry environments and saline soils. Two hundred twenty simple sequence repeat (microsatellites) markers, from a consensus linkage map of Eucalyptus, were selected to examine genetic diversity and population structure in a collection of E. cladocalyx introduced to southern Atacama Desert, Chile. A total of 130 microsatellites were successfully amplified, some of which are associated with quantitative traits of interest in Eucalyptus. Genetic analysis revealed a total of 457 alleles, ranging from 2 to 8 alleles per locus. A moderate level of genetic diversity (He = 0.492) and differentiation (FST = 0.086) was found among the populations. Mount Remarkable and Marble Range showed the highest and lowest level of genetic diversity, respectively. The Bayesian clustering analysis revealed three homogeneous genetic groups confirming that the individuals of E. cladocalyx from natural forest are highly and significantly structured. These results provide a novel information for the development of breeding strategies in E. cladocalyx by using marker-assisted selection in regions with low rainfall patterns.  相似文献   

15.

Background

Yams (Dioscorea spp.) are economically important food for millions of people in the humid and sub-humid tropics. Dioscorea dumetorum (Kunth) is the most nutritious among the eight-yam species, commonly grown and consumed in West and Central Africa. Despite these qualities, the storage ability of D. dumetorum is restricted by severe postharvest hardening of the tubers that can be addressed through concerted breeding efforts. The first step of any breeding program is bound to the study of genetic diversity. In this study, we used the Genotyping-By-Sequencing of Single Nucleotide Polymorphism (GBS-SNP) to investigate the genetic diversity and population structure of 44 accessions of D. dumetorum in Cameroon. Ploidy was inferred using flow cytometry and gbs2ploidy.

Results

We obtained on average 6371 loci having at least information for 75% accessions. Based on 6457 unlinked SNPs, our results demonstrate that D. dumetorum is structured into four populations. We clearly identified, a western/north-western, a western, and south-western populations, suggesting that altitude and farmers-consumers preference are the decisive factors for differential adaptation and separation of these populations. Bayesian and neighbor-joining clustering detected the highest genetic variability in D. dumetorum accessions from the south-western region. This variation is likely due to larger breeding efforts in the region as shown by gene flow between D. dumetorum accessions from the south-western region inferred by maximum likelihood. Ploidy analysis revealed diploid and triploid levels in D. dumetorum accessions with mostly diploid accessions (77%). Male and female accessions were mostly triploid (75%) and diploid (69%), respectively. The 1C genome size values of D. dumetorum accessions were on average 0.333?±?0.009?pg and 0.519?±?0.004?pg for diploids and triploids, respectively.

Conclusions

Germplasm characterization, population structure and ploidy are an essential basic information in a breeding program as well as for conservation of intraspecific diversity. Thus, results obtained in this study provide valuable information for the improvement and conservation of D. dumetorum. Moreover, GBS appears as an efficient powerful tool to detect intraspecific variation.
  相似文献   

16.
To characterize the molecular genetic diversity of the genus Darevskia, several populations were examined by the inter-SINE-PCR method, reporting the number and sizes of the spacers between individual copies of SINE-like interspersed repeats. Examination of 17 D. raddei geographical populations and several reference species revealed unequal genetic differences, measured as Nei and Li’s genetic distances (DNL), for different groups of samples. The highest homogeneity was observed for the apparently panmictic D. raddei nairensis population from the basin of the Hrazdan River: genetic differences within each of the five samples and between them were similarly low (less than 0.1). The difference between ten samples of D. raddei raddei from Armenia and Karabakh (0.2–0.3) was somewhat higher than the interindividual difference within each sample (0.1–0.2), indicating that the samples belonged to different populations. The assumption was supported by the phylogenetic tree topology and multidimensional scaling. The differences between samples from the morphological subspecies D. raddei raddei and D. raddei nairensis ranged 0.3–0.4. The difference of two D. raddei raddei samples of Talysh (Azerbaijan) from other samples of the same subspecies corresponded to the subspecific level. The genetic distances between the good species D. raddei and D. rudis was 0.6–0.7. In terms of DNL, a questionable population from northwestern Turkey (“D. tristis”) was closer to D. rudis (DNL = 0.45), probably representing its subspecies. The phylogeography of D. raddei is discussed.  相似文献   

17.
The closely related chars Salvelinus malma and Salvelinus albus, which sympatrically inhabit the Kamchatka River basin and Kronotsky Lake (Kamchatka), attract the attention of the researchers because of their debated origin and taxonomic status. Previous studies of sympatric populations of these chars revealed small but statistically significant genetic differences between these species at a number of molecular markers, suggesting the presence of the genetic exchange and hybridization. In this study, based on genotypic characterization of nine microsatellite loci, a considerable level of historical and contemporary genetic migration between sympatric populations of these chars was demonstrated. At the individual level, a high degree of hybridization was observed, mainly among the Dolly Varden individuals from the studied populations. The obtained evidences on the genetic connectivity between sympatric S. malma and S. albus do not support the separate species status of S. albus.  相似文献   

18.
Species endemic to sky island systems are isolated to mountain peaks and high elevation plateaux both geographically and ecologically, making them particularly vulnerable to the effects of climate change. Pressures associated with climate change have already been linked to local extinctions of montane species, emphasizing the importance of understanding the genetic diversity and population connectivity within sky islands systems for the conservation management of remaining populations. Our study focuses on the endangered alpine skink Pseudemoia cryodroma, which is endemic to the Victorian Alps in south-eastern Australia, and has a disjunct distribution in montane habitats above 1100 m a.s.l. Using mitochondrial DNA (mtDNA) and microsatellite loci, we investigated species delimitation, genetic connectivity and population genetic structure across the geographic range of this species. We found discordance between genetic markers, indicating historical mtDNA introgression at one of the study sites between P. cryodroma and the closely related, syntopic P. entrecasteauxii. Molecular diversity was positively associated with site elevation and extent of suitable habitat, with inbreeding detected in three of the five populations. These results demonstrate the complex interaction between geography and habitat in shaping the population structure and genetic diversity of P. cryodroma, and highlight the importance of minimising future habitat loss and fragmentation for the long-term persistence of this species.  相似文献   

19.
Recent anthropogenic fragmentation has led to population differentiation threatening viability of many species, including species specialized on mountainous ecosystems. Bombus ephippiatus, a widespread species mostly found in mountains in the Neotropics, seems to use the highlands as island, and deforested lowland areas may represent barriers to their dispersal, leading to isolation and potentially loss of genetic diversity. Yet, lack of knowledge of its population structure does not allow adequate management and conservation. To fill this knowledge gap, we assessed the population structure and inferred dispersion of B. ephippiatus in two mountain-ranges in Guatemala (Volcanic Chain and Sierra de las Minas). This region is characterized by high topographic variation and considerable deforestation strain. We analyzed the effects of elevation and land-use on genetic differentiation of B. ephippiatus populations and inferred its demography in the region. Our results suggest that B. ephippiatus is able to disperse long distances across most landscape types, reflected by its high genetic diversity, high effective population size, considerable gene flow, low population differentiation, as well as the lack of isolation by distance. Hence, B. ephippiatus may be a resilient species for the provision of pollination services. However, we detected a subtle divergence of B. ephippiatus into two clusters, of which Sierra de las Minas has been identified as a regional hotspot of genetic and species endemism. Yet, differentiation is very recent and hence likely caused by lowland deforestation. The combined effects of current forest cover and elevation partially explain the observed subtle patterns of differentiation suggesting that the maintenance of suitable habitat is crucial to ensure population connectivity of this keystone pollinator.  相似文献   

20.
The elucidation of species diversity and connectivity is essential for conserving coral reef communities and for understanding the characteristics of coral populations. To assess the species diversity, intraspecific genetic diversity, and genetic differentiation among populations of the brooding coral Seriatopora spp., we conducted phylogenetic and population genetic analyses using a mitochondrial DNA control region and microsatellites at ten sites in the Ryukyu Archipelago, Japan. At least three genetic lineages of Seriatopora (Seriatopora-A, -B, and -C) were detected in our specimens. We collected colonies morphologically similar to Seriatopora hystrix, but these may have included multiple, genetically distinct species. Although sexual reproduction maintains the populations of all the genetic lineages, Seriatopora-A and Seriatopora-C had lower genetic diversity than Seriatopora-B. We detected significant genetic differentiation in Seriatopora-B among the three populations as follows: pairwise F ST = 0.064–0.116 (all P = 0.001), pairwise G′′ST = 0.107–0.209 (all P = 0.001). Additionally, only one migrant from an unsampled population was genetically identified within Seriatopora-B. Because the peak of the settlement of Seriatopora larvae is within 1 d and almost all larvae are settled within 5 d of spawning, our observations may be related to low dispersal ability. Populations of Seriatopora in the Ryukyu Archipelago will probably not recover unless there is substantial new recruitment from distant populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号