首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the last 50 years, Spanish Atlantic salmon (Salmo salar) populations have been in decline. In order to bolster these populations, rivers were stocked with fish of northern European origin during the period 1974–1996, probably also introducing the furunculosis-inducing pathogen, Aeromonas salmonicida. Here we assess the relative importance of processes influencing mitochondrial (mt)DNA variability in these populations from 1948 to 2002. Genetic material collected over this period from four rivers in northern Spain (Cantabria) was used to detect variability at the mtDNA ND1 gene. Before stocking, a single haplotype was found at high frequency (0.980). Following stocking, haplotype diversity (h) increased in all rivers (mean h before stocking was 0.041, and 0.245 afterwards). These increases were due principally to the dramatic increase in frequency of a previously very low frequency haplotype, reported at higher frequencies in northern European populations proximate to those used to stock Cantabrian rivers. Genetic structuring increased after stocking: among-river differentiation was low before stocking (1950s/1960s Φ ST = –0.00296–0.00284), increasing considerably at the height of stocking (1980s Φ ST = 0.18932) and decreasing post-stocking (1990s/2002 Φ ST = 0.04934–0.03852). Gene flow from stocked fish therefore seems to have had a substantial role in increasing mtDNA variability. Additionally, we found significant differentiation between individuals that had probably died from infectious disease and apparently healthy, angled fish, suggesting a possible role for pathogen-driven selection of mtDNA variation. Our results suggest that stocking with non-native fish may increase genetic diversity in the short term, but may not reverse population declines.  相似文献   

2.
3.
In recent years, blood group and protein polymorphisms in Atlantic salmon have been investigated extensively with a view, primarily, to their use in identifying individuals of different spawning populations present in high seas fisheries. Erythrocyte antigens, haemoglobins, serum proteins and various tissue enzymes—mainly esterases and de-hydrogenases—have been studied by electrophoretic and immunological techniques. These studies are reviewed here for the first time.
Many of the protein systems exhibit multiple components and this fact, together with cytological evidence, indicates the occurrence of tetraploidy in the course of Salmonid evolution. The significance of a tetraploid origin in the evolution and ecological adaptation of Salmonids is discussed briefly.
Some protein systems studied exhibit phylogenetic variation, and analyses of phenotype ratios and allele frequencies indicate that the populations of different river systems are genetically distinct. Allele frequencies have not yet been shown to be stable from generation to generation however, and some of the factors likely to affect allele frequencies are discussed.
Different spawning populations can not be identified in high seas fisheries using these protein characters, although it may be possible to identify the continent of origin (N. America or Europe) of some individuals. Indeed, it has been proposed independently by two groups that North American and European populations of Atlantic salmon be assigned to different sub-species viz. S. s. americanus and S. s. europaeus respectively. The contradictory evidence on which these taxa are proposed is discussed, together with the evidence for other population groups proposed in the European part of the salmon's range. The possible role and future direction of studies on the biochemical genetics of salmon are outlined.  相似文献   

4.
Populations at the edge of species distributions are especially vulnerable to climate change. Genetic changes as well as modification of their population structure are expected as reactions to global warming. Atlantic salmon ( Salmo salar ) inhabiting south France has been chosen as a model for studying the effect of global warming in marginal populations during the last 15 years. Increased gene flow between neighboring populations and dichotomy of maturation age between sexes have been identified as two main population changes significantly associated with high values of the North Atlantic Oscillation index, a global climate indicator. Although occurrence of isolated populations in each river (or even tributary) is a paradigm for this species, at least in northern areas, increased gene flow between rivers is forecasted as long as climate warming increases, favoring metapopulations at regional level.  相似文献   

5.
Steppe-like habitats in Europe are seriously threatened as a result of fragmentation and anthropogenic degradation, at least in western and central parts. Considering the dramatic loss of steppe-like habitats, the evaluation of genetic variation in populations of steppe species is of immediate importance if appropriate conservation measures are to be undertaken. In this paper, we examine the genetic diversity of the highly endangered populations of the leaf-beetle Cheilotoma musciformis, which inhabits only a limited area in south-central Poland, which is geographically isolated from the continuous range of this species. Both mitochondrial and nuclear markers show that the Polish populations are distinct from Slovakian and Ukrainian ones. These regional populations should be considered independent conservation units. On the other hand, very little (mtDNA) or no (nuclear DNA) diversity has been found among the Polish subpopulations. This leads to the conclusion that this species has gone through a strong bottleneck leading to a drastic reduction in its genetic diversity prior to the establishment of present-day populations. Host plants have been identified for this species using barcodes, and the only hosts for the Polish and Ukrainian samples are sainfoins Onobrychis spp. while for the Slovakian sample it is either Dorycnium pentaphyllum or Lotus spp. (all Fabaceae). All of these data can be very valuable for the conservation of C. musciformis populations (e.g. for reintroductions).  相似文献   

6.
In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8–27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species’ distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.  相似文献   

7.
Animal migrations can affect disease dynamics. One consequence of migration common to marine fish and invertebrates is migratory allopatry-a period of spatial separation between adult and juvenile hosts, which is caused by host migration and which prevents parasite transmission from adult to juvenile hosts. We studied this characteristic for sea lice (Lepeophtheirus salmonis and Caligus clemensi) and pink salmon (Oncorhynchus gorbuscha) from one of the Canada's largest salmon stocks. Migratory allopatry protects juvenile salmon from L. salmonis for two to three months of early marine life (2-3% prevalence). In contrast, host diversity facilitates access for C. clemensi to juvenile salmon (8-20% prevalence) but infections appear ephemeral. Aquaculture can augment host abundance and diversity and increase parasite exposure of wild juvenile fish. An empirically parametrized model shows high sensitivity of salmon populations to increased L. salmonis exposure, predicting population collapse at one to five motile L. salmonis per juvenile pink salmon. These results characterize parasite threats of salmon aquaculture to wild salmon populations and show how host migration and diversity are important factors affecting parasite transmission in the oceans.  相似文献   

8.
There is increasing interest in the use of molecular genetic data to infer genealogical relationships among individuals in the absence of parental information. Such analyses can provide insight into mating systems and estimations of heritability in the wild. In addition, accurate pedigree reconstruction among the founders of endangered populations being reared in captivity would be invaluable. Many breeding programs for endangered species attempt to minimize loss of genetic variation and inbreeding through strategies designed to minimize global co-ancestry, but they assume a lack of relatedness among the founders. Yet populations that are the target of such programs are generally in serious demographic decline, and many of the available founders may be closely related. Here we demonstrate determination of full and half-sib relationships among the wild founders of a captive breeding program involving two endangered Atlantic salmon populations using two different approaches and associated software, pedigree and colony. A large portion of the juveniles collected in these two rivers appear to be derived from surprisingly few females mating with a large number of males, probably small precocious parr. Another group of potential founders, obtained from a local hatchery, clearly originated from a small number of full-sib crosses. These results allowed us to prioritize individuals on the basis of conservation value, and are expected to help minimize loss of genetic variation through time. In addition, insight is provided into the number of contributing parents and the mating systems that produced this last generation of endangered wild Atlantic salmon.  相似文献   

9.
Genetic variation in performance and quality traits measured at harvest has previously been demonstrated in Atlantic salmon aquaculture populations. To map major loci underlying this variation, we utilized data from 10 families from a commercial breeding programme. Significant QTL were detected affecting harvest weight and length traits on linkage group 1, and affecting waste weight on linkage group 5. In total, 11 of the 29 linkage groups examined showed at least suggestive evidence for a QTL. These data suggest that major loci affecting economically important harvest characteristics are segregating in commercial salmon populations.  相似文献   

10.
Ecologists have recently begun to acknowledge the importance of disease and parasites in the dynamics of populations. Diseases and parasites have probably been responsible for a number of extinctions on islands and on large land masses, but the problem has only been identified in retrospect. In contrast, endemic pathogens and parasites may operate as keystone species, playing a crucial role in maintaining the diversity of ecological communities and ecosystems. Will recent advances in the understanding of parasite population biology allow us to predict threats to endangered species and communities?  相似文献   

11.
12.
Both analytical and molecular tools currently exist that can be used to prolifically apply quantitative trait loci (QTL) analysis to the study of natural populations. In this communication, we review and exemplify the use of QTL mapping tools and genetic modeling for conservation geneticists. We simulate populations inspired by relevant cases that can be encountered in the field and analyze them using the recently developed flexible intercross analysis (FIA) method. We then reanalyze these results with the also recently developed natural and orthogonal interactions (NOIA) model of genetic effects. Next, we further exemplify the potential of genetic modeling for the interpretation of the output of QTL analyses by reviewing studies on hybrids between wild individuals and their domesticated relatives. Based on the results here presented we emphasize several points that are pertinent in conservation genetics including (i) the advantages of FIA as a powerful tool to be applied to line crosses in which the parental lines are not inbred, (ii) the importance of obtaining estimates of genetic effects that are adequate to address the research issue under consideration, (iii) the versatility of genetic modeling, particularly NOIA, to dissect complex genetic architectures and (iv) the possibility of using currently available methods to address non-equilibrium multiallelic systems.  相似文献   

13.

Background

The islands of North Maluku, Indonesia occupy a central position in the major prehistoric dispersal streams that shaped the peoples of Island Southeast Asia and the Pacific. Within this region a linguistic contact zone exists where speakers of Papuan and Austronesian languages reside in close proximity. Here we use population genetic data to assess the extent to which North Maluku populations experienced admixture of Asian genetic material, and whether linguistic boundaries reflect genetic differentiation today.

Results

Autosomal and X-linked markers reveal overall Asian admixture of 67% in North Maluku, demonstrating a substantial contribution of genetic material into the region from Asia. We observe no evidence of population structure associated with ethnicity or language affiliation.

Conclusions

Our data support a model of widespread Asian admixture in North Maluku, likely mediated by the expansion of Austronesian-speaking peoples into the region during the mid Holocene. In North Maluku there is no genetic differentiation in terms of Austronesian- versus Papuan-speakers, suggesting extensive gene flow across linguistic boundaries. In a regional context, our results illuminate a major genetic divide at the Molucca Sea, between the islands of Sulawesi and North Maluku. West of this divide, populations exhibit predominantly Asian ancestry, with very little contribution of Papuan genetic material. East of the Molucca Sea, populations show diminished rates of Asian admixture and substantial persistence of Papuan genetic diversity.  相似文献   

14.
Genetic variation was studied at 8 allozyme loci in six severely endangered wild Spanish populations of Salmo salar located at the southernmost geographical limit of European Atlantic salmon. Low levels of variation were detected and no significant deviations from Hardy–Weinberg equilibrium were found.  相似文献   

15.
When male hybrids of Atlantic salmon × brown trout were backcrossed to female Atlantic salmon, approximately 1% of diploid progeny hatched. These were shown to exhibit recombinant genotypes when examined electrophoreticalty at five enzyme loci. This is the first confirmation of genie recombination in backcrosses of these species. Triploidization greatly increases the proportion of backcross progeny which hatch.  相似文献   

16.
Mitochondrial DNA (mtDNA) variation was examined in 209 Atlantic salmon from two river systems, the R. Itchen in Hampshire (Southern England) and the R. Conwy (North Wales). Within each system, five spawning sites were sampled. Four enzymes (AVA II, HAE III, HINF I and MBO I) revealed restriction fragment polymorphisms that were informative. Ten clonal lines were observed. These clones were differentially distributed between the two river systems and single clonal types were found to predominate at several spawning sites. MBO I variants were found in salmon from the R. Itchen but not the R. Conwy. A significant heterogeneity in frequency distribution of clonal lines between parr and smolt assemblages of the same year class within the R. Itchen was detected. This heterogeneity suggests that differences in survival or migratory behaviour may be identified by changes in mtDNA clonal frequencies.  相似文献   

17.
This study investigated the effect of a major QTL for resistance to IPN in salmon on performance and production traits. The traits studied were related to growth, fillet and gutted yields, and fat content. Two different analyses were performed: (1) regression of the phenotypic data of the production traits on the predicted number of resistant IPN‐QTL alleles in individuals and (2) a variance component analysis using the (co)variance matrix calculated at the putative location of the QTL. No significant effect of the QTL was detected on any of the traits investigated by either method. The result has important practical implications in that it encourages the use of MAS to reduce the risks and impact of IPN mortality.  相似文献   

18.
We review factors affecting the within-river spawning migration of Atlantic salmon. With populations declining across the entire distribution range, it is important that spawners survive in the last phase of the spawning migration. Knowledge on the factors affecting migration is essential for the protection of populations, and to increase the success of reintroduction programmes. A number of studies have documented that the upstream migration may be delayed for many weeks at man-made obstacles such as power station outlets, residual flow stretches, dams, weirs and fishways. The fish may also be delayed at natural migration barriers. Often, the magnitude of delay is not predictable; fish may be considerably delayed at barriers that appear to humans to be easily passable, or they may quickly pass barriers that appear difficult. Stressful events like catch-and-release angling may affect upstream migration. Impacts of human activities may also cause altered migration patterns, affect the within-river distribution of the spawning population, and severe barriers may result in displacement of the spawning population to other rivers. Factors documented to affect within-river migration include previous experience, water discharge, water temperature, water velocity, required jump heights, fish size, fish acclimatisation, light, water quality/pollution, time of the season, and catch and handling stress. How each of these factors affects the upstream migration is to a varying extent understood; however, the effects may differ among different river sections and sites. There are likely a number of additional important factors, and the relationship between different factors is complex. The understanding of general mechanisms stimulating fish within-river migration are still lacking, and it cannot be reliably predicted under which conditions a fish will pass a given migration barrier or which conditions are needed to stimulate migration at different sites. The strong focus on the effects of water discharge in past work may have hampered consideration of other factors. Exploration of the influence of these other factors in future studies could improve our understanding of what controls the upstream migration.  相似文献   

19.
20.
A new method to estimate the survival of salmonids from egg fertilization to fry emergence is described. Fine mesh screen cylindrical capsules, 12 cm3 in volume, filled with batches of 10 eggs of Atlantic salmon Salmo salar were implanted in the substratum using small removable guiding tubes inserted with a metal spike. The method was compared with two other commonly used techniques, capping redds with fry‐traps and fine mesh screen incubation‐emergence boxes buried into the gravel. Egg‐to‐fry survival was recorded for the three methods run in parallel in artificial redds created on three sites of the Nivelle River watershed (south‐west of France), two in the stream and one in an experimental spawning channel. In the channel, survival to the eyed stage and to hatching in capsules and incubation‐emergence boxes was also compared. The implant of capsules proved easier and faster to use than other methods, the structure of the surrounding substratum was less disturbed and the capsules were less vulnerable to spates. This technique provided survival values largely free of the bias induced by other methods and intermediate between that of incubators and of traps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号