首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
We investigated the phylogeny of butterflies in the tribe Nymphalini sensu Harvey 1991, comprising the genera Vanessa, Cynthia, Bassaris, Aglais, Inachis, Nymphalis, Polygonia, Kaniska, Antanartia, Hypanartia, Symbrenthia, Mynes and Araschnia . Evidence from the mitochondrial gene ndl, the nuclear gene 'wingless' and from morphology/ ecology/behaviour were used separately and combined to analyse relationships. Phylogenies based on the different types of data agreed in many aspects of basic topology. We show that an analysis of only wing pattern characters (based on Nijhout's homology system) results in a topology broadly similar to the one resulting from analysis of the complete matrix. We found support for a monophyletic Nymphalini, where Hypanartia may be the sister clade to all other genera. Mynes, Symbrenthia and Araschnia together seem to form another basal clade. Evidence presented gives only moderate support for a monophyletic Vanessa in the wide sense, including also Cynthia and Bassaris , but strong support for the monophyly of the largely holarctic clade Aglais + Inachis + Nymphalis + Polygonia + Kaniska + Roddia . Within the latter group there is strong support for a clade consisting of Aglais + Inachis and for a second clade which includes Nymphalis, Polygonia (and its sister clade, the monotypic Kaniska) as well as Roddia l-album (= Nymphalis vaualbum ). As a consequence of this topology, Aglais is recognized as a taxon separate from Nymphalis . We present a hypothesis of species relationships within the focal group of genera. We also analyse and discuss the implications of excluding or including ecological data in phylogenetic tree construction, when the tree is to be used for studies in phylogenetic ecology.  相似文献   

3.
Using characters from mitochondrial DNA to construct maximum parsimony and maximum likelihood trees, we performed a phylogenetic analysis on representative species of 14 genera: 12 that belong to the treefrog family Rhacophoridae and two, Amolops and Rana, that are not rhacophorids. Our results support a phylogenetic hypothesis that depicts a monophyletic family Rhacophoridae. In this family, the Malagasy genera Aglyptodactylus, Boophis, Mantella, and Mantidactylus form a well-supported sister clade to all other rhacophorid genera, and Mantella is the sister taxon to Mantidactylus. Within the Asian/African genera, the genus Buergeria forms a well-supported clade of four species. The genera, except for Chirixalus, are generally monophyletic. An exception to this is that Polypedates dennysii clusters with species of Rhacophorus, suggesting that the taxonomy of the rhacophorids should be revised to reflect this relationship. Chirixalus is not monophyletic. Unexpectedly, there is strong support for Chirixalus doriae from Southeast Asia forming a clade with species of the African genus Chiromantis, suggesting that Chiromantis dispersed to Africa from Asia. Also, there is strong support for the sister taxon relationship of Chirixalus eiffingeri and Chirixalus idiootocus apart from other congeners.  相似文献   

4.
Vitaceae (the grape family) consist of 16 genera and ca. 950 species primarily distributed in tropical regions. The family is well‐known for the economic importance of grapes, and is also ecologically significant with many species as dominant climbers in tropical and temperate forests. Recent phylogenetic and phylogenomic analyses of sequence data from all three genomes have supported five major clades within Vitaceae: (i) the clade of Ampelopsis, Nekemias, Rhoicissus, and Clematicissus; (ii) the Cissus clade; (iii) the clade of Cayratia, Causonis, Cyphostemma, Pseudocayratia, Tetrastigma, and an undescribed genus “Afrocayratia”; (iv) the clade of Parthenocissus and Yua; and (v) the grape genus Vitis and its close tropical relatives Ampelocissus, Pterisanthes and Nothocissus, with Nothocissus and Pterisanthes nested within Ampelocissus. Based on the phylogenetic and morphological (mostly inflorescence, floral and seed characters) evidence, the new classification places the 950 species and 16 genera into five tribes: (i) tribe Ampelopsideae J.Wen & Z.L.Nie, trib. nov. (47 species in four genera; Ampelopsis, Nekemias, Rhoicissus and Clematicissus); (ii) tribe Cisseae Rchb. (300 species in one genus; Cissus); (iii) tribe Cayratieae J.Wen & L.M.Lu, trib. nov. (370 species in seven genera; Cayratia, Causonis, “Afrocayratia”, Pseudocayratia, Acareosperma, Cyphostemma and Tetrastigma); (iv) tribe Parthenocisseae J.Wen & Z.D.Chen, trib. nov. (ca. 16 spp. in two genera; Parthenocissus and Yua); and (v) tribe Viteae Dumort. (ca. 190 species in two genera; Ampelocissus and Vitis).  相似文献   

5.
Neotropical primates, traditionally grouped in the infraorder Platyrrhini, comprise 16 extant genera. Cladistic analyses based on morphological characteristics and molecular data resulted in topologic arrangements depicting disparate phylogenetic relationships, indicating that the evolution of gross morphological characteristics and molecular traits is not necessarily congruent. Here we present a phylogenetic arrangement for all neotropical primate genera obtained from DNA sequence analyses of the beta2-microglobulin gene. Parsimony, distance, and maximum likelihood analyses favored two families, Atelidae and Cebidae, each containing 8 genera. Atelids were resolved into atelines and pitheciines. The well-supported ateline clade branched into alouattine (Alouatta) and ateline (Ateles, Lagothrix, Brachyteles) clades. In turn, within the Ateline clade, Lagothrix and Brachyteles were well-supported sister groups. The pitheciines branched into well-supported callicebine (Callicebus) and pitheciine (Pithecia, Cacajao, Chiropotes) clades. In turn, within the pitheciine clade, Cacajao and Chiropotes were well-supported sister groups. The cebids branched into callitrichine (Saguinus, Leontopithecus, Callimico, Callithrix-Cebuella), cebine (Cebus, Saimiri), and aotine (Aotus) clades. While the callitrichine clade and the groupings of species and genera within this clade were all well supported, the cebine clade received only modest support, and the position of Aotus could not be clearly established. Cladistic analyses favored the proposition of 15 rather than 16 extant genera by including Cebuella pygmaea in the genus Callithrix as the sister group of the Callithrix argentata species group. These analyses also favored the sister grouping of Callimico with Callithrix and then of Leontopithecus with the Callithrix-Callimico clade.  相似文献   

6.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

7.
We present a mitochondrial gene tree for representative species of all the genera in the subfamily Myobatrachinae, with special emphasis on Crinia and Geocrinia. This group has been the subject of a number of long-standing taxonomic and phylogenetic debates. Our phylogeny is based on data from approximately 780 bp of 12S rRNA and 676 bp of ND2, and resolves a number of these problems. We confirm that the morphologically highly derived monotypic genera Metacrinia, Myobatrachus, and Arenophryne are closely related, and that Pseudophryne forms the sister group to these genera. Uperoleia and the recently described genus Spicospina are also part of this clade. Our data show that Assa and Geocrinia are reciprocally monophyletic and together they form a well-supported clade. Geocrinia is monophyletic and the phylogenetic relationships with the genus are fully resolved with two major species groups identified: G. leai, G. victoriana, and G. laevis; and G. rosea, G. alba, and G. vitellina (we were unable to sample G. lutea). We confirm that Taudactylus forms the sister group to the other myobatrachine genera, but our data are equivocal on the phylogenetic position of Paracrinia. The phylogenetic relationships among Crinia species are well resolved with strong support for a number of distinct monophyletic clades, but more data are required to resolve relationships among these major Crinia clades. Crinia tasmaniensis and Bryobatrachus nimbus form the sister clade to the rest of Crinia. Due to the lack of generic level synapomorphies for a Bryobatrachus that includes C. tasmaniensis, we synonymize Bryobatrachus with Crinia. Crinia georgiana does not form a clade distinct from other Crinia species and so our data do not support recognition of the genus Ranidella for other Crinia species. Crinia subinsignifera, C. pseudinsignifera, and C. insignifera are extremely closely related despite differences in male advertisement call. A preliminary investigation of phylogeographic substructure within C. signifera revealed significant divergence between samples from across the range of this species.  相似文献   

8.
Scrophulariaceae is one of the families that has been divided extensively due to the results of DNA sequence studies. One of its segregates is a vastly enlarged Plantaginaceae. In a phylogenetic study of 47 members of Plantaginaceae and seven outgroups based on 3561 aligned characters from four DNA regions (the nuclear ribosomal ITS region and the plastid trnL-F, rps16 intron, and matK-trnK intron regions), the relationships within this clade were analyzed. The results from parsimony and Bayesian analyses support the removal of the Lindernieae from Gratioleae to a position outside Plantaginaceae. A group of mainly New World genera is paraphyletic with respect to a clade of Old World genera. Among the New World taxa, those offering oil as a pollinator reward cluster together. Ourisia is sister to this clade. Gratioleae consist of Gratiola, Otacanthus, Bacopa, Stemodia, Scoparia, and Mecardonia. Cheloneae plus Russelia and Tetranema together constitute the sister group to a clade predominantly composed of Old World taxa. Among the Old World clade, Ellisiophyllum and Lafuentea have been analyzed for the first time in a molecular phylogenetic analysis. The former genus is sister to Sibthorpia and the latter is surprisingly the sister to Antirrhineae.  相似文献   

9.
Relationships among the living and recently extinct genera of bandicoots (Marsupialia: Peramelemorphia) have proven difficult to discern. Previous phylogenetic studies have used only morphology or mitochondrial DNA and have reported conflicting results in regards to their relationships. Most phylogenetic reconstructions recognize a basal split between the bilby Macrotis (Thylacomyidae) and the Peramelidae. The Peramelidae is composed of the Peramelinae (Isoodon and Perameles), Echymiperinae (Echymipera and Microperoryctes), and Peroryctinae (Peroryctes). Within Peramelidae, Echymipera and Microperoryctes usually group together to the exclusion of Peroryctes. This clade is sister to the Peramelinae. Placement of the recently extinct pig-footed bandicoot (Chaeropus: Chaeropodidae) has been ambiguous. We address the interrelationships and estimate times of divergence for the living bandicoot genera using a 6 kilobase concatenation consisting of protein-coding regions of five nuclear genes (ApoB, BRCA1, IRBP, Rag1, and vWF). We analyzed this concatenation using maximum parsimony, maximum likelihood, and Bayesian methods and estimated times of divergence using two Bayesian relaxed molecular clock methods. In all concatenated analyses, all nodes associated with the Peramelemorphia were robustly supported (bootstrap support percentages=100; posterior probabilities=1.00). Macrotis was recovered as basal to the remaining living bandicoots. Within the Peramelidae, Echymipera and Microperoryctes grouped to the exclusion of Peroryctes and this clade was sister to the Peramelinae. Only Rag1 amplified for Chaeropus; analyses based on this gene provide moderate support for an association of Chaeropus plus Peramelidae to the exclusion of Macrotis. Both relaxed clock Bayesian methods suggest that the living bandicoots are a relatively recent radiation originating sometime in the late Oligocene or early Miocene with subsequent radiations in the late Miocene to early Pliocene.  相似文献   

10.
Phylogenetic relationships of the subfamily Combretoideae (Combretaceae) were studied based on DNA sequences of nuclear ribosomal internal transcribed spacer (ITS) regions, the plastid rbcL gene and the intergenic spacer between the psaA and ycf3 genes (PY-IGS), including 16 species of eight genera within two traditional tribes of Combretoideae, and two species of the subfamily Strephonematoideae of Combretaceae as outgroups. Phylogenetic trees based on the three data sets (ITS, rbcL, and PY-IGS) were generated by using maximum parsimony (MP) and maximum likelihood (ML) analyses. Partition-homogeneity tests indicated that the three data sets and the combined data set are homogeneous. In the combined phylogenetic trees, all ingroup taxa are divided into two main clades, which correspond to the two tribes Laguncularieae and Combreteae. In the Laguncularieae clade, two mangrove genera, Lumnitzera and Laguncularia, are shown to be sister taxa. In the tribe Combreteae, two major clades can be classified: one includes three genera Quisqualis, Combretum and Calycopteris, within which the monophyly of the tribe Combreteae sensu Engler and Diels including Quisqualis and Combretum is strongly supported, and this monophyly is then sister to the monotypic genus Calycopteris; another major clade includes three genera Anogeissus, Terminalia and Conocarpus. There is no support for the monophyly of Terminalia as it forms a polytomy with Anogeissus. This clade is sister to Conocarpus. Electronic Publication  相似文献   

11.
The congenital fusion of carpels, or syncarpy, is considered a key innovation as it is found in more than 80% of angiosperms. Within the magnoliids however, syncarpy has rarely evolved. Two alternative evolutionary origins of syncarpy were suggested in order to explain the evolution of this feature: multiplication of a single carpel vs. fusion of a moderate number of carpels. The magnoliid family Annonaceae provides an ideal situation to test these hypotheses as two African genera, Isolona and Monodora, are syncarpous in an otherwise apocarpous family with multicarpellate and unicarpellate genera. In addition to syncarpy, the evolution of six other morphological characters was studied. Well-supported phylogenetic relationships of African Annonaceae and in particular those of Isolona and Monodora were reconstructed. Six plastid regions were sequenced and analyzed using maximum parsimony and Bayesian inference methods. The Bayesian posterior mapping approach to study character evolution was used as it accounts for both mapping and phylogenetic uncertainty, and also allows multiple state changes along the branches. Our phylogenetic analyses recovered a fully resolved clade comprising twelve genera endemic to Africa, including Isolona and Monodora, which was nested within the so-called long-branch clade. This is the largest and most species-rich clade of African genera identified to date within Annonaceae. The two syncarpous genera were inferred with maximum support to be sister to a clade characterized by genera with multicarpellate apocarpous gynoecia, supporting the hypothesis that syncarpy arose by fusion of a moderate number of carpels. This hypothesis was also favoured when studying the floral anatomy of both genera. Annonaceae provide the only case of a clear evolution of syncarpy within an otherwise apocarpous magnoliid family. The results presented here offer a better understanding of the evolution of syncarpy in Annonaceae and within angiosperms in general.  相似文献   

12.
The phylogeny of grouse (Aves: Tetraoninae) was reconstructed using four noncoding loci: two were W-linked, one was autosomal, and one was the mitochondrial control region (CR). The rapidly evolving CR provided resolution throughout the tree, whereas the slowly evolving nuclear loci failed to resolve deeper nodes. The tree based on all four loci combined was almost identical to the CR tree and did not improve resolution or bootstrap support. The stemminess and imbalance of the trees were good determinants of the quality of the phylogenetic signal. The skewness of the tree score distribution (g(1)) behaved contrary to prediction; loci that had a more symmetric tree score distribution produced trees that had greater stemminess and balance. The quality of the phylogenetic signal was related to the evolutionary rate. Four clades of grouse were discovered. Two of these clades corresponded to currently recognized genera Bonasa and Lagopus. Bonasa was the sister to other grouse and Lagopus was the sister to the other two non-Bonasa clades. The third clade included Falcipennis, Tetrao, and Lyrurus. The fourth clade included the genera Centrocercus, Dendragapus, and Tympanuchus. The data support recognition of Falcipennis canadensis franklinii and Dendragapus obscurus fuliginosus as species.  相似文献   

13.
Lee  O.-M.  McCourt  R.M.  Nam  M.  & Karol  K.G. 《Journal of phycology》2000,36(S3):42-43
Cosmarium and Staurastrum are the two most diverse genera of placoderm desmids (Family Desmidiaceae), with approximately 1100 and 800 species, respectively. Phylogenetic analysis of relationships of species has been extremely difficult. In a monograph of North American placoderm desmids, Prescott et al. described early phylogenetic work that concluded Staurastrum to be polyphyletic and certainly polymorphic. Likewise, Cosmarium has also been viewed as polyphyletic, and a number of workers have proposed splitting these genera. The classical view of West and West grouped species within each genus into two divisions and 6–8 sections based on wall features and semicell shape. We sequenced rbc L from 18 species of Cosmarium (2 divisions, 7 sections) and 12 species of Staurastrum (2 divisions and 7 sections) and performed a phylogenetic analysis (parsimony, maximum likelihood, bootstrap) using other placoderm desmids and Zygnematales as outgroups. The results exhibit little support for the monophyly of sections or divisions of the two genera. Furthermore, although there is support for the monophyly of clades within each genus, there is also support for a separate clade containing species from both genera.  相似文献   

14.
We report complete mitochondrial genomic sequences for Crocodylus acutus and Crocodylus novaeguineae, whose gene orders match those of other crocodilians. Phylogenetic analyses based on the sequences of 12 mitochondrial protein-coding genes support monophyly of two crocodilian taxonomic families, Alligatoridae (genera Alligator, Caiman, and Paleosuchus) and Crocodylidae (genera Crocodylus, Gavialis, Mecistops, Osteolaemus, and Tomistoma). Our results are consistent with monophyly of all crocodilian genera. Within Alligatoridae, genus Alligator is the sister taxon of a clade comprising Caiman and Paleosuchus. Within Crocodylidae, the basal phylogenetic split separates a clade comprising Gavialis and Tomistoma from a clade comprising Crocodylus, Mecistops, and Osteolaemus. Mecistops and Osteolaemus form the sister taxon to Crocodylus. Within Crocodylus, we sampled five Indopacific species, whose phylogenetic ordering is ((C. mindorensis, C. novaeguineae), (C. porosus, (C. siamensis, C. palustris))). The African species C. niloticus and New World species C. acutus form the sister taxon to the Indopacific species, although our sampling lacks three other New World species and an Australian species of Crocodylus.  相似文献   

15.
Previous phylogenetic analyses of Ranunculales, which have mostly been focused on an individual family and were based on molecular data alone, have recovered three main clades within the order. However, support for relationships among these three clades was weak. Earlier hypotheses were often hampered by limited taxon sampling; to date less than one-tenth of the genera in the order have been sampled. In this study, we used a greatly enlarged taxon sampling (105 species, representing 99 genera of all seven families in the order). Our study is, furthermore, the first to employ morphology (65 characters) in combination with sequence data from four genomic regions, including plastid rbcL, matK and trnL-F, and nuclear ribosomal 26S rDNA to reconstruct phylogenetic relationships within Ranunculales. Maximum parsimony and Bayesian inference were performed on the individual and combined data sets. Our analyses concur with those of previous studies, but in most cases provide stronger support and better resolution for relationships among the three main clades retrieved. The first, comprised solely of the monogeneric family Eupteleaceae, is the earliest-diverging lineage. The second clade is composed exclusively of taxa of Papaveraceae, which is sister to the third clade, the core Ranunculales, comprising the other five families of the order. Circaeasteraceae and Lardizabalaceae form a strongly supported clade. Pteridophyllum is supported as sister to Hypecoum, contradicting the viewpoint that the former is the earliest-diverging genus in Papaveraceae. Glaucidium is basalmost in Ranunculaceae. Within this phylogenetic framework, the evolution of selected characters is inferred and diagnostic morphological characters at different taxonomic levels are identified and discussed. Based on both morphological and molecular evidence, a classification outline for Ranunculales is presented, including the proposal of two new subfamilies, Menispermoideae and Tinosporoideae in Menispermaceae and a new tribe, Callianthemeae, for the genus Callianthemum (Ranunculaceae).  相似文献   

16.
The braconid wasp subfamily Doryctinae mainly comprises idiobiont ectoparasitoids of other insect larvae. In recent years, however, members of a few genera have been discovered to be associated with galls from various unrelated host plant families, with some of these being gall inducers whereas others are suspected as being predators of gallers. Because of their considerable morphological differences, these gall-associated taxa traditionally have been placed in separate tribes or even in other subfamilies. In this study, we investigate the phylogenetic relationships among representatives of a number of different doryctine genera, including five of its seven gall-associated genera using two genetic markers. Here we analyzed the length-variable 28S sequence data based on secondary structure both excising the unalignable regions and recoding them according to indel length. In addition, multiple alignments were carried out with a range of gap-opening and extension parameters. The combined (28S+CO1) phylogenetic hypotheses obtained, both excluding and recoding the unalignable regions, recover a clade comprising the five gall-associated genera, and most of the analyses using multiple alignments also support this relationship. These results support a scenario in which secondary phytophagy evolves from initially attacking primary gall-forming hosts. The relationships recovered are also more congruent with a model that explains the macroevolution of insect plant association in the Doryctinae as reflecting geographic proximity rather than host plant relationships. Further, our phylogenetic hypotheses consistently show that one of the main morphological features employed in the higher level classification of the Doryctinae is actually highly homoplastic.  相似文献   

17.
Legume subfamily Caesalpinioideae accommodates approximately 2250 species in 171 genera which traditionally are placed in four tribes: Caesalpinieae, Cassieae, Cercideae and Detarieae. The monophyletic tribe Detarieae includes the Amherstieae subclade which contains about 55 genera. Our knowledge of the relationships among those genera is good in some cases but for many other genera phylogenetic relationships have been unclear. The non-monophyletic nature of at least two amherstioid genera, Cynometra and Hymenostegia has also complicated the picture. During the course of a multi-disciplinary study of Hymenostegia sensu lato, which includes phylogenetic analyses based on matK and trnL data, we have recovered the “Scorodophloeus clade”, an exclusively tropical African clade of four genera which includes the eponymous genus Scorodophloeus, two undescribed generic segregates of Hymenostegia sensu lato, and the previously unsampled rare monospecific genus Micklethwaitia from Mozambique. Zenkerella is suggested as a possible sister genus to the Scorodophloeus clade. A distribution map is presented of the seven species that belong to the Scorodophloeus clade.  相似文献   

18.
The data on 31–37 allozyme loci in 21 species of nine salmonid genera are used for phylogenetic analysis by seven distance methods and several variants of cladistic analysis. Monophyletic origin for all genera and three sub-families of the Salmonidae is corroborated. The closest phylogenetic relationships are characteristic of Parasalmo and Oncorhynchus (bootstrap support is 88–99%), Brachymystax and Hucho (68–97%), and the clade ( Brachymystax + Hucho )+ Salmo (up to 85%). The patterns of phylogenetic relationships in the group Salmo-Parasalmo-Oncorhynchus are analogous to those in the group Parahucho-Hucho-Brachymystax. The position of Parahucho in phylogenetic trees of the Salmoninae is extremely unstable, although it is most likely associated with the clade ( Brachymystax + Hucho)+Salmo ) or Salvelinus. When using the out group analysis, Salvelinus appears as the earliest branch of the Salmoninae tree, whereas if the molecular clock is assumed, the basal position is occupied by Oncorhynchus. However, the latter genus is probably characterized by a substantially increased rate of molecular evolution.  相似文献   

19.
该研究基于叶绿体基因组数据,对桃金娘目(6科44属97种)及其近缘类群(牻牛儿苗目2科5属25种)的系统发育关系进行了分析.结果表明:(1)桃金娘目基因组大小为152~171 kb,包括的蛋白质编码基因数目为74~90个;牻牛儿苗目基因组大小为116~242 kb,包括的蛋白质编码基因数目为75~132个.(2)对比叶...  相似文献   

20.
Based mainly on morphological characters, the phylogenetic relationships among genera and some species groups of the neotropical family Callichthyidae were examined. A study of the osteology of a generalized callichthyid, Callichthys callichthys (Linnaeus), with detailed comparisons among representatives of the remaining genera in the family, is presented and used as a basis for the phylogenetic analysis. A single most parsimonious tree supported the monophyly of the family Callichthyidae based on 28 derived features and the division of the family in the subfamilies Corydoradinae and Callichthyinae. In the subfamily Corydoradinae, the genus Aspidoras is the sister-group of the clade formed by Corydoras plus Brochis. Five derived features support the monophyly of this clade and four support the monophyly of Brochis. No characters, however, were found to support the genus Corydoras. In the subfamily Callichthyinae, Dianema and Hopbstemum are sister-taxa. Megalechis represents the sister-group of Dianema plus Hoplosternum and Lepthoplosternum represents the sister-group to Megalechis plus Dianema plus Hopbstemum. Finally, Callichthys is considered the least derived member of the subfamily, and is hypothesized as the sister-group of the remaining species. A key to all callichthyid genera is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号