首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aurintricarboxylic acid (ATA) was found to be a very potent inhibitor of purified rabbit liver phosphofructokinase (PFK), giving 50% inhibition at 0.2 microM. The inhibition was in a manner consistent with interaction at the citrate-inhibitory site of the enzyme. The data suggest that inhibition of PFK by ATA was not due to denaturation of the enzyme or the irreversible binding of inhibitor, since the inhibition could be reversed by addition of allosteric activators of PFK, i.e. fructose 2,6-bisphosphate or AMP. Two other tricarboxylic acids, agaric acid and (-)-hydroxycitrate, were found to inhibit PFK. ATA at much higher concentrations (500 microM) was shown to inhibit fatty acid synthesis from endogenous glycogen in rat hepatocytes; however, protein synthesis was not altered.  相似文献   

3.
Chebulagic acid, isolated form Terminalia chebula Retz, proved to be a reversible and non-competitive inhibitor of maltase with a K(i) value of 6.6 muM. The inhibitory influence of chebulagic acid on the maltase-glucoamylase complex was more potent than on the sucrase-isomaltase complex. The magnitude of alpha-glucosidase inhibition by chebulagic acid was greatly affected by its origin. These results show a use for chebulagic acid in managing type-2 diabetes.  相似文献   

4.
In the present study, we report that phosphatidic acid (PA) functions as a novel, potent, and selective inhibitor of protein phosphatase 1 (PP1). The catalytic subunit of PP1alpha was inhibited by PA dose-dependently in a noncompetitive manner with a K(i) value of 80 nM. The inhibition by PA was specific to PP1 as PA failed to inhibit protein phosphatase 2A (PP2A) or PP2B. Furthermore, PA was the most effective and potent inhibitor of PP1 compared with other phospholipids. Because we recently showed that ceramides activated PP1, we next examined the effects of PA on ceramide stimulation of PP1. PA inhibited both basal and ceramide-stimulated PP1 activities, and ceramide showed potent and stereoselective activation of PP1 in the presence of PA. Next, the effects of PA on ceramide-induced responses were examined. Molt-4 cells took up PA dose- and time-dependently such that by 1 and 3 h, uptake of PA was 0.37 and 0. 65% of total PA added, respectively. PA at 30 microM and calyculin A at 10 nM (an inhibitor of PP1 and PP2A at low concentrations), but not okadaic acid at 10 nM (a PP2A inhibitor at low concentrations) prevented poly(ADP-ribose) polymerase proteolysis induced by C(6)-ceramide. Moreover, the combination of PA with okadaic acid prevented retinoblastoma gene product dephosphorylation induced by C(6)-ceramide. These data suggest that PA functions as a specific regulator of PP1 and may reverse or counteract those effects of ceramide that are mediated by PP1, such as apoptosis and retinoblastoma gene product dephosphorylation.  相似文献   

5.
The loop following helix α2 in glutathione transferase P1-1 has two conserved residues, Cys48 and Tyr50, important for glutathione (GSH) binding and catalytic activity. Chemical modification of Cys48 thwarts the catalytic activity of the enzyme, and mutation of Tyr50 generally decreases the kcat value and the affinity for GSH in a differential manner. Cys48 and Tyr50 were targeted by site-specific mutations and chemical modifications in order to investigate how the α2 loop modulates GSH binding and catalysis. Mutation of Cys48 into Ala increased KMGSH 24-fold and decreased the binding energy of GSH by 1.5 kcal/mol. Furthermore, the protein stability against thermal inactivation and chemical denaturation decreased. The crystal structure of the Cys-free variant was determined, and its similarity to the wild-type structure suggests that the mutation of Cys48 increases the flexibility of the α2 loop rather than dislocating the GSH-interacting residues. On the other hand, replacement of Tyr50 with Cys, producing mutant Y50C, increased the Gibbs free energy of the catalyzed reaction by 4.8 kcal/mol, lowered the affinity for S-hexyl glutathione by 2.2 kcal/mol, and decreased the thermal stability. The targeted alkylation of Cys50 in Y50C increased the affinity for GSH and protein stability. Characterization of the most active alkylated variants, S-n-butyl-, S-n-pentyl-, and S-cyclobutylmethyl-Y50C, indicated that the affinity for GSH is restored by stabilizing the α2 loop through positioning of the key residue into the lock structure of the neighboring subunit. In addition, kcat can be further modulated by varying the structure of the key residue side chain, which impinges on the rate-limiting step of catalysis.  相似文献   

6.
Ascorbic acid is a potent inhibitor of various forms of T cell apoptosis.   总被引:2,自引:0,他引:2  
This study was designed to examine the effect of ascorbic acid (vitamin C) on various death pathways of mouse T cells. Unlike humans, mice produce their own ascorbic acid and our study tested the effect of additional ascorbic acid on murine T cells. Our data show that three T cell death pathways (growth factor withdrawal-, spontaneous-, and steroid-induced death) were inhibited when T cells were incubated with ascorbic acid. The data show that both activated and resting T cells were responsive to ascorbic acid since both populations were resistant to death stimuli when treated with ascorbic acid. Additionally, effector T cells were more likely to enter S phase if treated with ascorbic acid. Our data implicate ascorbic acid as a potent inhibitor of various forms of T cell death and suggest that vitamin C may function as an immune booster through this mechanism.  相似文献   

7.
Acid sphingomyelinase (A-SMase, EC 3.1.4.12) catalyzes the lysosomal degradation of sphingomyelin to phosphorylcholine and ceramide. Inherited deficiencies of acid sphingomyelinase activity result in various clinical forms of Niemann-Pick disease, which are characterised by massive lysosomal accumulation of sphingomyelin. Sphingomyelin hydrolysis by both, acid sphingomyelinase and membrane-associated neutral sphingomyelinase, plays also an important role in cellular signaling systems regulating proliferation, apoptosis and differentiation. Here, we present a potent and selective novel inhibitor of A-SMase, L-alpha-phosphatidyl-D-myo-inositol-3,5-bisphosphate (PtdIns3,5P2), a naturally occurring substance detected in mammalian, plant and yeast cells. The inhibition constant Ki for the new A-SMase inhibitor PtdIns3,5P2 is 0.53 microM as determined in a micellar assay system with radiolabeled sphingomyelin as substrate and recombinant human A-SMase purified from insect cells. Even at concentrations of up to 50 microM, PtdIns3,5P2 neither decreased plasma membrane-associated, magnesium-dependent neutral sphingomyelinase activity, nor was it an inhibitor of the lysosomal hydrolases beta-hexosaminidase A and acid ceramidase. Other phosphoinositides tested had no or a much weaker effect on acid sphingomyelinase. Different inositol-bisphosphates were studied to elucidate structure-activity relationships for A-SMase inhibition. Our investigations provide an insight into the structural features required for selective, efficient inhibition of acid sphingomyelinase and may also be used as starting point for the development of new potent A-SMase inhibitors optimised for diverse applications.  相似文献   

8.
The cholesterol esterase and lipoprotein lipase catalyzed hydrolyses of the water-soluble substrate p-nitrophenyl butyrate are competitively inhibited by butaneboronic acid and phenylboronic acid. Phenyl-n-butylborinic acid has been synthesized and characterized as an ultrapotent transition state analog inhibitor: Ki = 2.9 +/- 0.6 nM and 1.7 +/- 0.3 microM for the cholesterol esterase and lipoprotein lipase reactions, respectively. These results are interpreted in terms of transition state structure and stabilization.  相似文献   

9.
10.
Modulation of GST P1-1 activity by polymerization during apoptosis   总被引:3,自引:0,他引:3  
Glutathione S-transferases (GSTs, EC 2.5.1.18) belong to a large family of functionally different enzymes that catalyze the S-conjugation of glutathione with a wide variety of electrophilic compounds including carcinogens and anticancer drugs. Drug resistance may result from reduction in apoptosis of neoplastic cells when exposed to antineoplastic drugs. The c-Jun N-terminal Kinase (JNK) belongs to the family of stress kinases and has been shown to be required for the maximal induction of apoptosis by DNA-damaging agents. Recently, an inhibition of JNK activity by GST P1-1, which was reversed by polymerization induced by oxidative stress, has been reported in 3T3-4A mouse fibroblast cell lines. The finding that GST P1-1 might inhibit JNK activity and that it is frequently highly expressed in tumor tissues suggests its possible implication in "apoptosis resistance" during antineoplastic therapy. We investigated the modulation of GST P1-1 during apoptosis in a neoplastic T-cell line (Jurkat) induced by hydrogen peroxide and etoposide. Apoptosis was paralleled by the appearance of a dimeric form of GST P1-1 on western blotting, associated with an increase in the Km(GSH) and a reduction in GST P1-1 specific activity toward 1-chloro-2,4-dinitrobenzene, which reached statistical significance only in H(2)O(2)-treated cells. Our data seem to suggest that H(2)O(2) and etoposide may partly act through a process of partial inactivation of the GST P1-1, possibly involving the "G" site in the process of dimerization, and thus favoring programmed cell death.  相似文献   

11.
Resveratrol (trans-3,4',5-trihydroxystilbene) is a phytoalexin compound found in juice and wine produced from dark-skinned grape cultivars and reported to have anti-inflammatory and anticarcinogenic activities. To investigate the mechanism of anticarcinogenic activities of resveratrol, the effects on cytochrome P450 (P450) were determined in human liver microsomes and Escherichia coli membranes coexpressing human P450 1A1 or P450 1A2 with human NADPH-P450 reductase (bicistronic expression system). Resveratrol slightly inhibited ethoxyresorufin O-deethylation (EROD) activity in human liver microsomes with an IC(50) of 1.1 mM. Interestingly, resveratrol exhibited potent inhibition of human P450 1A1 in a dose-dependent manner with IC(50) of 23 microM for EROD and IC(50) of 11 microM for methoxyresorufin O-demethylation (MROD). However, the inhibition of human P450 1A2 by resveratrol was not so strong (IC(50) 1.2 mM for EROD and 580 microM for MROD). Resveratrol showed over 50-fold selectivity for P450 1A1 over P450 1A2. The activities of human NADPH-P450 reductase were not significantly changed by resveratrol. In a human P450 1A1/reductase bicistronic expression system, resveratrol inhibited human P450 1A1 activity in a mixed-type inhibition (competitive-noncompetitive) with a K(i) values of 9 and 89 microM. These results suggest that resveratrol is a selective human P450 1A1 inhibitor, and may be considered for use as a strong cancer chemopreventive agent in humans.  相似文献   

12.
Consideration of the computer-optimised dimensions of anthraflavic acid indicates that it is essentially a planar molecule with a large area/depth ratio, that would preferentially interact with the polycyclic aromatic hydrocarbon-induced family of cytochrome P-450 proteins (cytochromes P-448). Anthraflavic acid was a potent inhibitor of the O-deethylations of ethoxycoumarin and ethoxyresorufin, both catalysed primarily by cytochromes P-448, in Arochlor-1254-induced hepatic microsomes. Similarly anthraflavic acid markedly inhibited the mutagenicity of 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-I) in the Ames test. In contrast, it has no effect on the dealkylation of pentoxyresorufin, a reaction catalysed primarily by the phenobarbital-induced cytochromes P-450, and NADPH-dependent reduction of cytochrome c. It is concluded that anthraflavic acid is a potent and specific inhibitor of cytochrome P-448 activity.  相似文献   

13.
The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor.   总被引:38,自引:0,他引:38  
X Z Zhou  K P Lu 《Cell》2001,107(3):347-359
Telomerase activity is critical for normal and transformed human cells to escape from crisis and is implicated in oncogenesis. Here we describe a novel Pin2/TRF1 binding protein, PinX1 that inhibits telomerase activity and affects tumorigenicity. PinX1 and its small TID domain bind the telomerase catalytic subunit hTERT and potently inhibit its activity. Overexpression of PinX1 or its TID domain inhibits telomerase activity, shortens telomeres, and induces crisis, whereas depletion of endogenous PinX1 increases telomerase activity and elongates telomeres. Depletion of PinX1 also increases tumorigenicity in nude mice, consistent with its chromosome localization at 8p23, a region with frequent loss of heterozygosity in a number of human cancers. Thus, PinX1 is a potent telomerase inhibitor and a putative tumor suppressor.  相似文献   

14.
A series of aminoresorcinols and related compounds were tested for rat intestinal alpha-glucosidase inhibition and these results suggested that the 2-aminoresorcinol moiety of 6-amino-5,7-dihydroxyflavone (2) is important to exert the intestinal alpha-glucosidase inhibitory activity and 2-aminoresorcinol (4), itself, is a potent alpha-glucosidase inhibitor and inhibited sucrose-hydrolyzing activity of rat intestinal alpha-glucosidase uncompetitively.  相似文献   

15.
Melatonin is a potent inhibitor for myeloperoxidase   总被引:1,自引:0,他引:1  
Myeloperoxidase (MPO) catalyzes the formation of potent oxidants that have been implicated in the pathogenesis of various diseases including atherosclerosis, asthma, arthritis, and cancer. Melatonin plays an important part in the regulation of various body functions including circadian sleep rhythms, blood pressure, oncogenesis, retinal function, seasonal reproduction, and immunity. Here, we demonstrate that melatonin serves as a potent inhibitor of MPO under physiological-like conditions. In the presence of chloride (Cl-), melatonin inactivated MPO at two points in the classic peroxidase cycle through binding to MPO to form an inactive complex, melatonin-MPO-Cl, and accelerating MPO compound II formation, an inactive form of MPO. Inactivation of MPO was mirrored by the direct conversion of MPO-Fe(III) to MPO compound II without any sign of compound I accumulation. This behavior indicates that melatonin binding modulates the formation of MPO intermediates and their decay rates. The Cl- presence enhanced the affinity of MPO toward melatonin, which switches the enzyme activity from peroxidation to catalase-like activity. In the absence of Cl-, melatonin served as a 1e- substrate for MPO compound I, but at higher concentration it limited the reaction by its dissociation from the corresponding complex. Importantly, melatonin-dependent inhibition of MPO occurred with a wide range of concentrations that span various physiological and supplemental ranges. Thus, the interplay between MPO and melatonin may have a broader implication in the function of several biological systems. This dual regulation by melatonin is unique and represents a new means through which melatonin can control MPO and its downstream inflammatory pathways.  相似文献   

16.
One of the major causes of chemotherapy failure in cancer treatment is multidrug resistance (MDR) which is mediated by the ABCB1/P-glycoprotein. Previously, through the use of an extensive screening process, we found that vardenafil, a phosphodiesterase 5 (PDE-5) inhibitor significantly reverses MDR in ABCB1 overexpressing cancer cells, and its efficacy was greater than that of tadalafil, another PDE-5 inhibitor. The present study was designed to determine the reversal mechanisms of vardenafil and tadalafil on ABC transporters-mediated MDR. Vardenafil or tadalafil alone, at concentrations up to 20 μM, had no significant toxic effects on any of the cell lines used in this study, regardless of their membrane transporter status. However, vardenafil when used in combination with anticancer substrates of ABCB1, significantly potentiated their cytotoxicity in ABCB1 overexpressing cells in a concentration-dependent manner, and this effect was greater than that of tadalafil. The sensitivity of the parenteral cell lines to cytotoxic anticancer drugs was not significantly altered by vardenafil. The differential effects of vardenafil and tadalafil appear to be specific for the ABCB1 transporter as both vardenafil and tadalafil had no significant effect on the reversal of drug resistance conferred by ABCC1 (MRP1) and ABCG2 (BCRP) transporters. Vardenafil significantly increased the intracellular accumulation of [(3)H]-paclitaxel in the ABCB1 overexpressing KB-C2 cells. In addition, vardenafil significantly stimulated the ATPase activity of ABCB1 and inhibited the photolabeling of ABCB1 with [(125)I]-IAAP. Furthermore, Western blot analysis indicated the incubation of cells with either vardenafil or tadalafil for 72 h did not alter ABCB1 protein expression. Overall, our results suggest that vardenafil reverses ABCB1-mediated MDR by directly blocking the drug efflux function of ABCB1.  相似文献   

17.
Two peptides, SGCI and SGTI, that inhibited chymotrypsin and trypsin, respectively, were isolated from the haemolymph of Schistocerca gregaria. Their primary structures were found to be identical with SGP-2 and SGP-1, two of a series of peptides isolated from ovaries of the same species (A. Hamdaoui et al., FEBS Lett. 422 (1998) 74-78). All these peptides are composed of 35-36 amino acid residues and contain three homologous disulfide bridges. The residues imparting specificity to SGCI and SGTI were identified as Leu-30 and Arg-29, respectively. The peptides were synthesised by solid-phase peptide synthesis, and the synthetic ones displayed the same inhibition as the natural forms: SGCI is a strong inhibitor of chymotrypsin (K(i) = 6.2 x 10(-12) M), and SGTI is a rather weak inhibitor of trypsin (K(i) = 2.1 x 10(-7) M). The replacement of P(1) then P(1)' residues of SGCI with trypsin-specific residues increased affinity towards trypsin 3600- and 1100-fold, respectively, thus SGCI was converted to a strong trypsin inhibitor (K(i) = 5.0 x 10(-12) M) that retained some inhibitory affinity towards chymotrypsin (K(i) = 3.5 x 10(-8) M). The documented role of both P(1) and P(1)' highlights the importance of S(1)'P(1)' interactions in enzyme-inhibitor complexes.  相似文献   

18.
The Ki for the interaction of 2-fluorourocanic acid with urocanase (from Pseudomonas fluorescens) is 1000 times as great as Km for the natural substrate, urocanic acid, whereas enzymatic hydration of the fluoro analog occurs ca. 100 times more slowly. Inhibition is competive and is eventually overcome by utilization of the analog. By contrast, 4-fluoro- and 2-amino-urocanic acid are neither significant inhibitors nor substrates for the enzyme. 2-Fluorourocanic acid may prove a useful tool for blocking the utilization of histidine as a one-carbon source in metabolism.  相似文献   

19.
The drug disulfiram is a thiol-reacting drug that is relatively nontoxic when used alone and has been used in the therapy of alcohol abuse for more than 40 years. Several effects of this drug have been reported for DNA synthesis and cell proliferation. In this study, the inhibitory effect of disulfiram on topoisomerase I and II activity was investigated by measuring the relaxation of superhelical plasmid pBR322 DNA. Disulfiram (1-100 microM) inhibited topoisomerase I and II in a concentration-dependent manner (IC(50) congruent with 42 +/- 8 and 30 +/- 9 microM, respectively). Consistent with the assumption that a thiol residue is involved, dithiothreitol (1 mM) markedly prevented the inhibitory effect of disulfiram on the activity of both classes of topoisomerases. These findings might explain certain aspects of disulfiram toxicity and encourage new studies to determine the usefulness of this drug and its analogues as antineoplastic agent.  相似文献   

20.
Elafin is a potent inhibitor of proteinase 3   总被引:4,自引:0,他引:4  
Elafin, a human skin derived inhibitor of human leukocyte elastase, was tested for inhibitory activity against proteinase 3, an elastin degrading proteinase of neutrophils. The inhibitory activity of elafin was compared with antileukoprotease and eglin C. Elafin proved to be a potent inhibitor of elastin-FITC degradation showing an IC 50 of 9.5 x 10(-9) M. Potency was found to be more than 100-fold higher as compared with antileukoprotease and eglin C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号