首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We used a recent scanning electron microscope equipped with field emission gun and highly sensitive detectors to develop a fast and simple protocol for double immunogold staining using 10- and 15-nm gold particles. We used this approach to analyse the afimbrial adhesive sheath produced by pathogenic Escherichia coli interacting with the surface of epithelial cells. We demonstrated that AfaE adhesin and AfaD invasin were exposed at the bacterial surface during the interaction. This method could be easily and widely extended to the study of the early invasion process of many bacterial and viral pathogens, by immunocytochemical probing.  相似文献   

2.
The afa operons from Escherichia coli associated with extra-intestinal and intestinal infections have been characterized and the AfaD protein has been shown to be involved in the low internalization of laboratory strains expressing the afa-3 operon. The aim of this study was to determine the role of the AfaD invasin during the interaction of pathogenic E. coli with epithelial cells. We show that AfaD is implicated in the entry of a clinical isolate into both HeLa and undifferentiated Caco-2 cells. Once in the cytoplasm of these cells, the bacteria formed inclusions in which they were able to survive for at least 72 h. Internalization assays using polystyrene beads coated with His6-tagged purified AfaD (rAfaD) demonstrated that this invasin mediates entry into cells derived from various tissues (intestine and urothelium) that are targets for afa-positive strains. Consistent with the previous observation that an antibody blockade involving anti-alpha5beta1 integrin abolishes bacterial internalization, we show here that the entry of rAfaD-coated beads was dependent on the production and accessibility of beta1 integrins on the cells. The AfaD proteins belong to a family of invasins that are at least 45% identical. Despite their differences, the recombinant rAfaD-III and rAfaD-VIII proteins both bound to beta1 integrins. Our results suggest that beta1 integrin is a common receptor for AfaD invasins and that additional AfaD-type-specific receptors exist.  相似文献   

3.
The afa-3 gene cluster determines the formation of an afimbrial adhesive sheath that is expressed by uropathogenic as well as diarrhoea-associated Escherichia coli strains. It contains six genes ( afaA–afaF  ), among which the afaE3 gene is known to code for the structural AfaE-III adhesin (previously designated AFA-III), whereas no role has yet been identified for the afaD gene product. The afa-3 gene cluster is closely related to the daa operon that codes for an adhesin, the F1845 adhesin, which is highly related to the AfaE-III adhesin; however, unlike the AfaE-III adhesin, F1845 is a fimbrial adhesin. Reported in this work is the construction of chimeras between the afa-3 and daa operons. Analyses of the phenotypes conferred by these afa-3 / daa chimeric clusters allowed us to conclude that the biogenesis of a fimbrial or an afimbrial adhesin is fully determined by the amino acid sequence of the AfaE-III and F1845 adhesins. Moreover, the role of the AfaD product in the biosynthesis of the afimbrial sheath was assessed by immunogold and immunofluorescence experiments. The AfaD and the AfaE-III products were purified and used to raise rabbit and mouse antisera. Similar to AfaE-III, AfaD was found to be a surface-exposed protein as well as an adhesin; both AfaD and AfaE-III are concomittantly expressed by the bacterial cell. These results demonstrate, for the first time, that the afimbrial adhesive sheath expressed by pathogenic E. coli is composed of two adhesins.  相似文献   

4.
Studies with two uropathogenic urease-producing Escherichia coli strains, 1021 and 1440, indicated that the urease genes of each are distinct. Recombinant plasmids encoding urease activity from E. coli 1021 and 1440 differed in their restriction endonuclease cleavage sites and showed minimal DNA hybridization under stringent conditions. The polypeptides encoded by the DNA fragments containing the 1021 and 1440 urease loci differed in electrophoretic mobility under reducing conditions. Regulation of urease gene expression differed in the two ureolytic E. coli. The E. coli 1021 locus is probably chromosomally encoded and has DNA homology to Klebsiella, Citrobacter, Enterobacter, and Serratia species and to about one-half of the urease-producing E. coli tested. The E. coli 1440 locus is plasmid encoded; plasmids with DNA homology to the 1440 locus probe were found in urease-producing Salmonella spp., Providencia stuartii, and two E. coli isolates. In addition, the 1440 urease probe was homologous to Proteus mirabilis DNA.  相似文献   

5.
Ureolytic Escherichia coli strains are uncommon clinical isolates. The urease phenotype in a large percentage of these isolates is unstable and lost upon storage. We examined two urease-positive uropathogenic E. coli isolates that give off urease-negative segregants and determined that the urease phenotype was chromosomally encoded. The urease phenotype was cloned from E. coli 1021 and found to be encoded on a 9.4-kilobase HindIII restriction fragment. Transposon mutagenesis indicated that at least 3.2 kilobases of this fragment were necessary for production of urease. The urease recombinant plasmid pURE coded for at least four insert-specific polypeptides as determined by maxicell analysis. Disruption of the region encoding two of these polypeptides (67 and 27 kilodaltons) abolished urease activity. Analysis by Southern hybridization of urease-positive E. coli 1021 and seven independently isolated urease-negative segregants showed that a DNA rearrangement was associated with the urease-negative phenotype.  相似文献   

6.
The OCT plasmid encodes enzymes for alkane hydroxylation and alkanol dehydrogenation. Structural components are encoded on the 7.5-kilobase pair alkBAC operon, whereas positive regulatory components are encoded by alkR. We have constructed plasmids containing fusions of cloned alkBAC and alkR DNA and used these fusion plasmids to study the functional expression of the alkBAC operon and the regulatory locus alkR in Pseudomonas putida and in Escherichia coli. Growth on alkanes requires a functional chromosomally encoded fatty acid degradation system in addition to the plasmid-borne alk system. While such a system is active in P. putida, it is active in E. coli only in fadR mutants in which fatty acid degradation enzymes are expressed constitutively. Using such mutants, we found that E. coli as well as P. putida grew on octane as the sole source of carbon and energy when they were supplied with the cloned complete alk system. The alkR locus was strictly necessary in E. coli as well as in P. putida for expression of the alkBAC operon. The alkBAC operon could, however, be further reduced to a 5-kilobase pair operon without affecting the Alk phenotype in either species to a significant extent. Although with this reduction the plasmid-encoded alkanol dehydrogenase activity was lost, chromosomally encoded alkanol dehydrogenases in P. putida and E. coli compensated for this loss. The induction kinetics of the alk system was studied in detail in P. putida and E. coli. We used specific antibodies raised against alkane hydroxylase to follow the appearance of this protein following induction with octane. We found the induction kinetics of alkane hydroxylase to be similar in both species. A steady-state level was reached after about 2 h of induction in which time the alkane hydroxylase accounted for about 1.5% of total newly synthesized protein. Thus, alkBAC expression is very efficient and strictly regulated to both P. putida and E. coli.  相似文献   

7.
8.
The effective synthesis of the envelope antigen F1 of Y. pestis in E. coli HB101 is mediated by the expression of the caf1M gene. This gene was sequenced, and the protein encoded was found to have a significant homology with the chaperone protein PapD of uropathogenic E. coli. The data presented allow one to suppose Caf1M and PapD proteins perform similar functions in the biogenesis of the Y. pestis capsule and E. coli P-pili, respectively.  相似文献   

9.
3-Hydroxydecanoic acid (3HD) was produced in Escherichia coli by mobilizing (R)-3-hydroxydecanoyl-acyl carrier protein-coenzyme A transacylase (PhaG, encoded by the phaG gene). By employing an isogenic tesB (encoding thioesterase II)-negative knockout E. coli strain, CH01, it was found that the expressions of tesB and phaG can up-regulate each other. In addition, 3HD was synthesized from glucose or fructose by recombinant E. coli harboring phaG and tesB. This study supports the hypothesis that the physiological role of thioesterase II in E. coli is to prevent the abnormal accumulation of intracellular acyl-coenzyme A.  相似文献   

10.
ABSTRACT: BACKGROUND: The human OXR1 gene belongs to a class of genes with conserved functions that protect cells from reactive oxygen species (ROS). The gene was found using a screen of a human cDNA library by its ability to suppress the spontaneous mutator phenotype of an E. coli mutH nth strain. The function of OXR1 is unknown. The human and yeast genes are induced by oxidative stress and targeted to the mitochondria; the yeast gene is required for resistance to hydrogen peroxide. Multiple spliced isoforms are expressed in a variety of human tissues, including brain. RESULTS: In this report, we use a papillation assay that measures spontaneous mutagenesis of an E. coli mutM mutY strain, a host defective for oxidative DNA repair. Papillation frequencies with this strain are dependent upon a G->T transversion in the lacZ gene (a mutation known to occur as a result of oxidative damage) and are suppressed by in vivo expression of human OXR1. N-terminal, C-terminal and internal deletions of the OXR1 gene were constructed and tested for suppression of the mutagenic phenotype of the mutM mutY strain. We find that the TLDc domain, encoded by the final four exons of the OXR1 gene, is not required for papillation suppression in E. coli. Instead, we show that the protein segment encoded by exon 8 of OXR1 is responsible for the suppression of oxidative damage in E. coli. CONCLUSION: The protein segment encoded by OXR1 exon 8 plays an important role in the anti-oxidative function of the human OXR1 protein. This result suggests that the TLDc domain, found in OXR1 exons 12-16 and common in many proteins with nuclear function, has an alternate (undefined) role other than oxidative repair.  相似文献   

11.
Fragments of DNA, obtained from the luminescent bacterium Photobacterium leiognathi and inserted into the plasmid pBR322, were found to code for the luminescence expressed in E. coli cells. The genetic functions necessary for light production in E. coli are localized on a DNA fragment of about 7 kbp. The insertion mutagenesis was used to define the luminescence functions encoded by the hybrid plasmid.  相似文献   

12.
In Escherichia coli, prolipoprotein signal peptidase is encoded by the lsp gene, which is organized into an operon consisting of ileS, lsp, and three open reading frames, designated genes x, orf-149, and orf-316. The Enterobacter aerogenes lsp gene was cloned and expressed in E. coli. The nucleotide sequence of the Enterobacter aerogenes lsp gene and a part of its flanking sequences were determined. A high degree of homology was found between the E. coli ileS-lsp operon and the corresponding genes in Enterobacter aerogenes. Furthermore, the same five genes which constitute an operon in E. coli were found in Enterobacter aerogenes in the same order.  相似文献   

13.
In Escherichia coli, the enzyme called cysteine desulfhydrase (CD), which is responsible for L-cysteine degradation, was investigated by native-PAGE and CD activity staining of crude cell extracts. Analyses with gene-disrupted mutants showed that CD activity resulted from two enzymes: tryptophanase (TNase) encoded by tnaA and cystathionine beta-lyase (CBL) encoded by metC. It was also found that TNase synthesis was induced by the presence of L-cysteine. The tnaA and metC mutants transformed with the plasmid containing the gene for feedback-insensitive serine acetyltransferase exhibited higher L-cysteine productivity than the wild-type strain carrying the same plasmid. These results indicated that TNase and CBL did act on L-cysteine degradation in E. coli cells.  相似文献   

14.
两种菌株来源的glyA基因的克隆、表达及酶活性检测   总被引:1,自引:0,他引:1  
采用PCR方法,分别从大肠杆菌和嗜热链球菌基因组DNA中扩增获得glyA基因,分别克隆入载体pET-28 a(+)中并进行表达,分离和纯化得到两种不同来源的SHMT,分别检测两种SHMT的逆向酶活。比较来源于大肠杆菌K12与嗜热链球菌AS1.2471中的glyA基因表达的丝氨酸羟甲基转移酶(SHMT)的活性,以获得高活性的SHMT。结果成功获得两种菌中的glyA基因,并表达出具有较高活性的SHMT,其中嗜热链球菌中glyA基因表达出的SHMT的酶活性大约为大肠杆菌的两倍。从嗜热链球菌中克隆表达的SHMT具有更高的催化活性及良好的工业应用前景。  相似文献   

15.
Drosophila copia protease is likely to be encoded in the gag gene. We have expressed copia gag polyprotein precursor in E. coli. The gag precursor was correctly processed to generate a unique laminate structure in E. coli. The processing was almost completely blocked by a mutation at the putative active site of copia protease, and resulted in accumulation of the precursor. Furthermore, the laminate structure was not found in E. coli expressing the mutant precursor. These results indicate that the protease is involved in cleaving the gag precursor itself. Also, the assembly of copia gag protein should correlate to the autoprocessing of copia gag polyprotein precursor.  相似文献   

16.
tRNA precursor molecules that contain the CCA sequence found at the 3' termini of all mature tRNAs are cleaved in vitro more readily by M1 RNA, the catalytic subunit of E. coli RNAase P, than precursors that lack this sequence. The sensitivity to the CCA sequence is not apparent when precursors are cleaved by the reconstituted RNAase P holoenzyme that contains both M1 RNA and the protein subunit. These results have been obtained with monomeric precursor molecules encoded by the E. coli and human chromosomes and with three dimeric precursor molecules encoded by the bacteriophage T4 genome. The data are in agreement with previous results concerning T4 tRNA biosynthesis in vivo and show that the CCA sequence is important for the processing of precursors to tRNAs.  相似文献   

17.
The newly isolated strain Pseudomonas sp. ON-4a converts D,L-2-amino-delta2-thiazoline-4-carboxylic acid to L-cysteine via N-carbamoyl-L-cysteine. A genomic DNA fragment from this strain containing the gene(s) encoding enzymes that convert D,L-2-amino-delta2-thiazoline-4-carboxylic acid into L-cysteine was cloned in Escherichia coli. Transformants expressing cysteine-forming activity were selected by growth of an E. coli mutant defective in the cysB gene. A positive clone, denoted CM1, carrying the plasmid pCM1 with an insert DNA of approximately 3.4 kb was obtained, and the nucleotide sequence of a complementing region was analyzed. Analysis of the sequence found two open reading frames, ORF1 and ORF2, which encoded proteins of 183 and 435 amino acid residues, respectively. E. coli DH5alpha harboring pTrCM1, which was constructed by inserting the subcloned sequence into an expression vector, expressed two proteins of 25 kDa and 45 kDa. From the analyses of crude extracts of E. coli DH5alpha carrying deletion derivatives of pTrCM1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by enzymatic activity, it was found that the 25-kDa protein encoded by ORF1 was the enzyme L-2-amino-delta2-thiazoline-4-carboxylic acid hydrolase, which catalyzes the conversion of L-2-amino-delta2-thiazoline-4-carboxylic acid to N-carbamoyl-L-cysteine, and that the 45-kDa protein encoded by ORF2 was the enzyme N-carbamoyl-L-cysteine amidohydrolase, which catalyzes the conversion of N-carbamoyl-L-cysteine to L-cysteine.  相似文献   

18.
The genes for a new enterotoxin were cloned from Escherichia coli SA53. The new toxin was heat labile and activated adenylate cyclase but was not neutralized by antisera against cholera toxin or E. coli heat-labile enterotoxin. Subcloning and minicell experiments indicated that the toxin is composed of two polypeptide subunits that are encoded by two genes. The two toxin subunits exhibited mobilities on polyacrylamide gels that are similar to those of cholera toxin and E. coli heat-labile enterotoxin subunits. A 0.8-kilobase DNA probe for the new enterotoxin failed to hybridize with the cloned structural genes for E. coli heat-labile enterotoxin.  相似文献   

19.
Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli.  相似文献   

20.
Glr, the glutamate racemase of Bacillus subtilis (formerly Bacillus natto) IFO 3336 encoded by the glr gene, and YrpC, a protein encoded by the yrpC gene, which is located at a different locus from that of the glr gene in the B. subtilis genome, share a high sequence similarity. The yrpC gene complemented the D-glutamate auxotrophy of Escherichia coli WM335 cells defective in the glutamate racemase gene. Glutamate racemase activity was found in the extracts of E. coli WM335 clone cells harboring a plasmid, pYRPC1, carrying its gene. Thus, the yrpC gene encodes an isozyme of glutamate racemase of B. subtilis IFO 3336. YrpC is mostly found in an inactive inclusion body in E. coli JM109/pYRPC1 cells. YrpC was solubilized readily, but glutamate racemase activity was only slightly restored. We purified YrpC from the extracts of E. coli JM109/pYRPC2 cells using a Glutathione S-transferase Gene Fusion System to characterize it. YrpC is a monomeric protein and contains no cofactors, like Glr. Enzymological properties of YrpC, such as the substrate specificity and optimum pH, are also similar to those of Glr. The thermostability of YrpC, however, is considerably lower than that of Glr. In addition, YrpC showed higher affinity and lower catalytic efficiency for L-glutamate than Glr. This is the first example showing the occurrence and properties of a glutamate racemase isozyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号