首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthetic pathway for trichothecenes in the filamentous fungus Fusarium sporotrichioides NRRL 3299 has been further characterized. Experiments using the techniques of mutational analysis and the incorporation of radiolabeled precursors indicated that leucine is a direct precursor to the isovalerate moiety present in the trichothecene, T-2 toxin. Analysis of trichothecene production in a UV-induced leucine auxotroph also revealed the existence of a branched biosynthetic pathway which results in the coproduction of T-2 toxin and the T-2 toxin analogs neosolaniol, 8-isobutyryl-neosolaniol, and 8-propionyl-neosolaniol. Leucine limitation imposed by the leucine auxotroph simultaneously led to underproduction of T-2 toxin and overproduction of these T-2 toxin analogs, which are produced in small amounts by the wild-type parent. Furthermore, it was shown that the ratio of T-2 toxin to T-2 toxin analogs produced by the leucine auxotroph can be modulated by the concentration of leucine in the medium. These results suggest that the four trichothecenes mentioned above are derived from a common intermediate and that there is competition for this intermediate among the branched pathways leading to these four cometabolites.  相似文献   

2.
Ancymidol, a plant growth regulator, inhibited biosynthesis of diacetoxyscirpenol by Gibberella pulicaris (Fusarium sambucinum) in a defined liquid medium. Ancymidol also inhibited biosynthesis of T-2 toxin by a wild-type strain of Fusarium sporotrichioides and biosynthesis of diacetoxyscirpenol, deacetylated calonectrin, and dideacetylated calonectrin by mutant strains of this species. Ancymidol-treated cultures accumulated the hydrocarbon trichodiene, a biosynthetic precursor of the trichothecenes. Ancymidol did not block trichodiene accumulation by a trichodiene-producing mutant strain of F. sporotrichioides. Ancymidol appears to block the trichothecene biosynthetic pathway after formation of trichodiene and before formation of trichothecenes containing four or more oxygen atoms.  相似文献   

3.
Ancymidol, a plant growth regulator, inhibited biosynthesis of diacetoxyscirpenol by Gibberella pulicaris (Fusarium sambucinum) in a defined liquid medium. Ancymidol also inhibited biosynthesis of T-2 toxin by a wild-type strain of Fusarium sporotrichioides and biosynthesis of diacetoxyscirpenol, deacetylated calonectrin, and dideacetylated calonectrin by mutant strains of this species. Ancymidol-treated cultures accumulated the hydrocarbon trichodiene, a biosynthetic precursor of the trichothecenes. Ancymidol did not block trichodiene accumulation by a trichodiene-producing mutant strain of F. sporotrichioides. Ancymidol appears to block the trichothecene biosynthetic pathway after formation of trichodiene and before formation of trichothecenes containing four or more oxygen atoms.  相似文献   

4.
5.
The production of type A trichothecene mycotoxins by 19 Fusaria, including 12Fusarium sporotrichioides, 4F. chlamydosporum and 3F. graminearum at 15°C and 25°C over a 35-day period was analyzed by ELISA using antibodies cross-reactive with most type A trichothecenes after conversion to T-2 tetraol tetraacetate. The toxin production peaked at 20–25 days of incubation with maximum yield between 4–6 mg type A trichothecene/ml of culture medium for 5F. sporotrichioides cultures and between 1 to 2 mg/ml for 6F. sporotrichioides cultures. OneF. sporotrichioides produced 700 µg type A trichothecenes/ml of culture medium. Detectable type A trichothecene was also found in the culture extracts ofF. chlamydosporum andF. graminearum, but the yield was very low (less than 100 µg/ml). Quantitative determination of individual trichothecenes was achieved by separation of different toxin in HPLC and followed by ELISA analysis. Eight to 10 immunoreactive peaks, corresponding to various type A trichothecenes, were detected in all the fungal extracts. T-2 tetraol (T-2-4ol), 4-acetyl-T-2 tetraol (4-Ac-T-2-4ol), neosolaniol (NEOS), diacetoxyscirpenol (DAS), HT-2 and T-2 toxin accounted for more than 85% of the total toxins. In general, low temperature was preferred for total type A trichothecene production. More T-2-4ol, 4-Ac-T-2-4ol, HT-2 and DAS were produced at 25°C. In contrast, more T-2 toxin and NEOS were produced at 15°C. Transformation of T-2 toxin and NEOS to polar metabolites such as T-2-4ol, 4-acetyl-T-2-4ol and HT-2 by various strains were observed at both temperatures after 25 days incubation.  相似文献   

6.
Mutants of Fusarium sporotrichioides NRRL 3299 that were blocked or altered in the biosynthesis of the trichothecene T-2 toxin were generated by UV treatment and identified by a rapid screen in which monoclonal antibodies to T-2 were used. Three stable mutants were isolated and chemically characterized. Two mutants accumulated diacetoxyscirpenol, which suggests that they were defective in the step required for the addition of a hydroxyl group to the C-8 position in the trichothecene core structure. The third mutant appeared to be partially blocked at an early step or regulatory point in the pathway. This represents the first isolation of mutants in a trichothecene biosynthetic pathway.  相似文献   

7.
Isolation and characterization of mutants blocked in T-2 toxin biosynthesis   总被引:1,自引:0,他引:1  
Mutants of Fusarium sporotrichioides NRRL 3299 that were blocked or altered in the biosynthesis of the trichothecene T-2 toxin were generated by UV treatment and identified by a rapid screen in which monoclonal antibodies to T-2 were used. Three stable mutants were isolated and chemically characterized. Two mutants accumulated diacetoxyscirpenol, which suggests that they were defective in the step required for the addition of a hydroxyl group to the C-8 position in the trichothecene core structure. The third mutant appeared to be partially blocked at an early step or regulatory point in the pathway. This represents the first isolation of mutants in a trichothecene biosynthetic pathway.  相似文献   

8.
9.
《Cellular signalling》2014,26(12):2951-2960
T-2 toxin, a major compound of trichothecenes, inhibits protein synthesis and induces inflammation and cell apoptosis through the activation of MAPK pathway. The JAK/STAT pathway has recently been shown to be downstream targets of trichothecenes. However, whether there is any crosstalk between JNK and JAK/STAT pathways in trichothecene toxicity has not been studied. In the present study, we explored this potential in RAW264.7 cells treated with T-2 toxin. Our results revealed a crosstalk between JNK1 and STAT3 after T-2 toxin treatment, which was mediated by K-Ras. T-2 toxin treatment resulted in rapid phosphorylation, and more importantly, JNK1-STAT3 signaling pathway was shown to maintain the normal function of the mitochondria and to inhibit T-2 toxin-induced apoptosis. Therefore, this pathway was considered to be a potential cell survival pathway. Breakdown and degranulation of ribosomes in the rough endoplasmic reticulum and swelling of mitochondria were clearly visible after the cells had been incubated with T-2 toxin for 12 h. Our data suggest that T-2 toxin had a Janus face: it induced both apoptotic and cell survival pathways. These results suggest that the crosstalk and the balance between MAPK and JAK/STAT pathway might be involved in T-2 toxin-induced apoptosis in RAW264.7 cells.  相似文献   

10.
A survey of 38 samples of Canadian overwintered grains showed that 14 (37 %) contained viableFusarium. Of a total of 38Fusarium isolates, cultured on autoclaved corn, 20 (from 7 grain samples) showed toxicity to brine shrimp larvae and 12 (from 5 samples) produced levels of trichothecenes detectable by thin layer chromatography. The principal trichothecene found was T-2 toxin, produced by 10 strains and accompanied in half of these by neosolaniol; some of these strains were identified asF. sporotrichioides Sherbakoff. Two strains ofF. poae (Peck) Wollenw. formed small amounts of diacetoxyscirpenol. T-2 toxin was the most toxic of 8 trichothecenes tested on brine shrimp larvae; the wide range of toxicities limits the usefulness of this bioassay as a general screening method for trichothecenes.  相似文献   

11.
An antibody against group A trichothecenes was produced after immunization of rabbits with an immunogen prepared by conjugation of T-2 toxin to bovine albumin at the C-8 position. T-2 toxin was first converted to 3-acetylneosolaniol (3-Ac-NEOS) and then to its hemisuccinate (HS) before conjugation to the protein. The rabbits showed a quick immune response after immunization of the new conjugate. The antibody produced bound with tritiated T-2 toxin, T-2 tetraol tetraacetate, and diacetoxyscirpenol (DAS) and showed good cross-reactivities with most of the group A trichothecenes. The concentrations causing 50% inhibition of binding of 3H-T-2 toxin to the new antibody by unlabeled T-2, acetyl-T-2, 3'-OH-T-2, DAS, 3-Ac-NEOS-HS, 3'-OH-Ac-T-2, T-2 tetraol tetraacetate, iso-T-2, 3-Ac-NEOS, Ac-DAS, and 3,4,15-triacetyl-7-deoxynivalenol were found to be 0.34, 0.34, 0.6, 2.5, 4, 10, 18, 24, 100, 200, and 300 ng/assay, respectively; for HT-2, T-2 triol, and T-2 tetraol, the concentration was greater than 1000 ng/assay. Nivalenol, deoxynivalenol (DON), 15-acetyl-DON, and triacetyl-DON, did not inhibit the binding at 1000 ng/assay. The practical application of using this new antibody for radioimmunoassay (RIA) of trichothecene was tested by spiking T-2 toxin to corn. T-2 toxin was then extracted with acetone, subjected to a simple Sep-Pak C-18 reversed-phase treatment, and analyzed by RIA. The overall recovery for 18 samples spiked with 10 to 50 ppb of T-2 toxin was 94.22%.  相似文献   

12.
We screened a Fusarium sporotrichioides NRRL 3299 cDNA expression library in a toxin-sensitive Saccharomyces cerevisiae strain lacking a functional PDR5 gene. Fourteen yeast transformants were identified as resistant to the trichothecene 4,15-diacetoxyscirpenol, and each carried a cDNA encoding the trichothecene 3-O-acetyltransferase that is the F. sporotrichioides homolog of the Fusarium graminearum TRI101 gene. Mutants of F. sporotrichioides NRRL 3299 produced by disruption of TRI101 were altered in their abilities to synthesize T-2 toxin and accumulated isotrichodermol and small amounts of 3, 15-didecalonectrin and 3-decalonectrin, trichothecenes that are not observed in cultures of the parent strain. Our results indicate that TRI101 converts isotrichodermol to isotrichodermin and is required for the biosynthesis of T-2 toxin.  相似文献   

13.
14.
15.
Several species of the genus Fusarium and related fungi produce trichothecenes which are sesquiterpenoid epoxides that act as potent inhibitors of eukaryotic protein synthesis. Interest in the trichothecenes is due primarily to their widespread contamination of agricultural commodities and their adverse effects on human and animal health. In this review, we describe the trichothecene biosynthetic pathway in Fusarium species and discuss genetic evidence that several trichothecene biosynthetic genes are organized in a gene cluster. Trichothecenes are highly toxic to a wide range of eukaryotes, but their specific function, if any, in the survival of the fungi that produce them is not obvious. Trichothecene gene disruption experiments indicate that production of trichothecenes can enhance the severity of disease caused by Fusarium species on some plant hosts. Understanding the regulation and function of trichothecene biosynthesis may aid in development of new strategies for controlling their production in food and feed products.  相似文献   

16.
We tested a novel colorimetric toxicity test, based on inhibition of beta-galactosidase activity in the yeast Kluyveromyces marxianus, for sensitivity to a range of mycotoxins. A variety of trichothecene mycotoxins could be detected. The order of toxicity established with this bioassay was verrucarin A > roridin A > T-2 toxin > diacetoxyscirpenol > HT-2 toxin > acetyl T-2 toxin > neosolaniol > fusarenon X > T-2 triol > scirpentriol > nivalenol > deoxynivalenol > T-2 tetraol. The sensitivity of detection was high, with the most potent trichothecene tested, verrucarin A, having a 50% effective concentration (concentration of toxin causing 50% inhibition) of 2 ng/ml. Other mycotoxins (cyclopiazonic acid, fumonisin B1, ochratoxin A, patulin, sterigmatocystin, tenuazonic acid, and zearalenone) could not be detected at up to 10 micrograms/ml, nor could aflatoxins B1 and M1 be detected at concentrations up to 25 micrograms/ml. This test should be useful for trichothecene detection and for studies of relevant interactions-both between trichothecenes themselves and between trichothecenes and other food constituents.  相似文献   

17.
Non-volatile sesquiterpenoids, a trichothecene family of phytotoxins such as deoxynivalenol (DON) and T-2 toxin, contain numerous molecular species and are synthesized by phytopathogenic Fusarium species. Although trichothecene chemotypes might play a role in the virulence of individual Fusarium strains, the phytotoxic action of individual trichothecenes has not been systematically studied. To perform a comparative analysis of the phytotoxic action of representative trichothecenes, the growth and morphology of Arabidopsis thaliana growing on media containing these compounds was investigated. Both DON and diacetoxyscirpenol (DAS) preferentially inhibited root elongation. DON-treated roots were less organized compared with control roots. Moreover, preferential inhibition of root growth by DON was also observed in wheat plants. In addition, T-2 toxin-treated seedlings exhibited dwarfism with aberrant morphological changes (e.g. petiole shortening, curled dark-green leaves, and reduced cell size). These results imply that the phytotoxic action of trichothecenes differed among their molecular species. Cycloheximide (CHX)-treated seedlings displayed neither feature, although it is known that trichothecenes inhibit translation in eukaryotic ribosomes. Microarray analyses suggested that T-2 toxin caused a defence response, the inactivation of brassinosteroid (BR), and the generation of reactive oxygen species in Arabidopsis. This observation is in agreement with our previous reports in which trichothecenes such as T-2 toxin have an elicitor-like activity when infiltrated into the leaves of Arabidopsis. Since it has been reported that BR plays an important role in a broad range of disease resistance in tobacco and rice, inactivation of BR might affect pathogenicity during the infection of host plants by trichothecene-producing fungi.  相似文献   

18.
The trichothecenes T-2 toxin and deoxynivalenol (DON) are natural fungal products that are toxic to both animals and plants. Their importance in the pathogenicity of Fusarium spp. on crop plants has inspired efforts to understand the genetic and biochemical mechanisms leading to trichothecene synthesis. In order to better understand T-2 toxin biosynthesis by Fusarium sporotrichioides and DON biosynthesis by F. graminearum, we compared the nucleotide sequence of the 23-kb core trichothecene gene cluster from each organism. This comparative genetic analysis allowed us to predict proteins encoded by two trichothecene genes, TRI9 and TRI10, that had not previously been described from either Fusarium species. Differences in gene structure also were correlated with differences in the types of trichothecenes that the two species produce. Gene disruption experiments showed that F. sporotrichioides TRI7 (FsTRI7) is required for acetylation of the oxygen on C-4 of T-2 toxin. Sequence analysis indicated that F. graminearum TRI7 (FgTRI7) is nonfunctional. This is consistent with the fact that the FgTRI7 product is not required for DON synthesis in F. graminearum because C-4 is not oxygenated.  相似文献   

19.
Metabolic effects of trichothecene T-2 toxin   总被引:1,自引:0,他引:1  
Cereals and other agricultural products contaminated with trichothecene mycotoxins are unfit for consumption. Until recently, the metabolic effects of T-2 toxin (T-2) were thought to reside in its ability to inhibit protein synthesis. It is now clear that trichothecenes have multiple effects, including inhibition of DNA, RNA, and protein synthesis in several cellular systems, inhibition of in vitro protein synthesis, inhibition of mitochondrial functions, effects on cell division, normal cell shape, and hemolysis of erythrocytes. It is argued that these effects are pleiotropic responses of the cell's biosynthetic network to protein synthesis inhibition. However, in studies with erythrocytes, which lack nuclei and protein synthesis, changes in cell shape and lytic response towards T-2 are observed. Susceptibility to lysis is species dependent and correlates with the presence of phosphatidylcholine. Owing to their amphipathic nature, T-2 and other trichothecenes could exert their cytotoxicity by acting on cell membranes. As for cell energetics, T-2 inhibits the mitochondrial electron transport system, with succinic dehydrogenase as one site of action. Although initial investigations of the metabolic effects of T-2 mediated cytotoxicity suggested the inhibition of protein synthesis as the principal site of action, current thought suggests that the effects of trichothecenes are much more diverse.  相似文献   

20.
Many Fusarium species produce one or more agriculturally important trichothecene mycotoxins, and the relative level of toxicity of these compounds is determined by the pattern of oxygenations and acetylations or esterifications on the core trichothecene structure. Previous studies with UV-induced Fusarium sporotrichioides NRRL 3299 trichothecene mutants defined the Tri1 gene and demonstrated that it was required for addition of the oxygen at the C-8 position during trichothecene biosynthesis. We have cloned and characterized the Tri1 gene from NRRL 3299 and found that it encodes a cytochrome P450 monooxygenase. The disruption of Tri1 blocks production of C-8-oxygenated trichothecenes and leads to the accumulation of 4,15-diacetoxyscirpenol, the same phenotype observed in the tri1 UV-induced mutants MB1716 and MB1370. The Tri1 disruptants and the tri1 UV-induced mutants do not complement one another when coinoculated, and the Tri1 gene sequence restores T-2 toxin production in both MB1716 and MB1370. The DNA sequence flanking Tri1 contains another new Tri gene. Thus, Tri1 encodes a C-8 hydroxylase and is located either in a new distal portion of the trichothecene gene cluster or in a second separate trichothecene gene cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号