首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hapten derivative of EB1089 [1(R),3(S),25-trihydroxy-26,27-dimethyl-9,10-seco-24-homocholesta-5(Z),7(E),10(19),22(E),24(E)-pentaene], a side-chain analog of 1alpha,25-dihydroxyvitamin D(3), was synthesized for raising antibodies with a high specificity for EB1089. The A-ring moiety of EB1089 was replaced in the hapten by a linker for conjugation to a protein. Three polyclonal antibodies were obtained by immunizing rabbits with a BSA-conjugate of the hapten. The antibodies were characterized for titer, avidity and specificity using an enzyme immunoassay with covalently bound EB1089. The three antibodies had similar binding profiles and were highly selective for EB1089 and its metabolites over the naturally occurring vitamin D metabolites. Cross-reactivities with 25-hydroxyvitamin D(3), the most abundant vitamin D metabolite in serum, were in the range 0.01-0.2% relative to EB1089.  相似文献   

2.
1,25-Dihydroxyvitamin D3 induces both 25-hydroxyvitamin D3- and 1,25-dihydroxyvitamin D3- 24-hydroxylase activities. However, whether 24-hydroxylation of these substrates is catalyzed by a single enzyme is unknown. We have examined the substrate specificity of the enzyme using the solubilized and reconstituted chick renal mitochondrial 24-hydroxylase enzyme system. The soluble enzyme catalyzes 24-hydroxylation of both substrates. The apparent Km of the 24-hydroxylase for 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 were 1.47 and 0.14 microM, respectively. Kinetic studies demonstrated that 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 act as competitive inhibitors with respect to each other. 1,25-Dihydroxyvitamin D3 inhibited the production of 24,25-dihydroxyvitamin D3 with an apparent Ki of 0.09 microM and 25-hydroxyvitamin D3 inhibited the production of 1,24,25-trihydroxyvitamin D3 with an apparent Ki of 3.9 microM. These results indicate that chick 24-hydroxylase preferentially hydroxylates 1,25-dihydroxyvitamin D3 and support the idea that the 24-hydroxylation of these substrates is catalyzed by a single enzyme.  相似文献   

3.
Hybridoma cell lines secreting antibodies for vitamin D3 metabolites have been generated by fusing splenocytes from BALB/c mice immunized with 3 beta-glutaryl-25-hydroxyvitamin D3 conjugated to bovine serum albumin (3 beta-glu-25-OH-D3-BSA) and Sp2/O-Ag14 myeloma cells. Purification of monoclonal antibodies from culture media or ascites fluids was accomplished by procedures including affinity chromatography on Protein A-Sepharose 4B. Each monoclonal antibody was analyzed as to its affinity and specificity by equilibrium dialysis and an enzyme immunoassay (EIA) based on a double antibody system. It was demonstrated that clone 1C2-60 produced an antibody highly specific to 1 alpha,25-dihydroxyvitamin D3 (calcitriol), and the clone 2B3-66 antibody was reactive to 25-hydroxyvitamin D3 and similar structural compounds. These two monoclonal antibodies produced by 1C2-60 and 2B3-66 were determined to belong to the IgG2a class, and their affinity constants (Ka) with 3 beta-glu-25-OH-D3 were demonstrated to be 3.6 X 10(9) M-1 and 2.9 X 10(9) M-1, respectively, at 4 degrees C. The characteristics of these monoclonal antibodies were compared with those of conventional antibodies raised in mice and rabbits. Finally, by using monoclonal antibody 1C2-60, a sensitive EIA has been developed that can detect 10 pg of calcitriol.  相似文献   

4.
Renal 25-hydroxyvitamin D3 1 alpha-hydroxylase cDNA cloned from the kidneys of mice lacking the vitamin D receptor was expressed in Escherichia coli JM109. As expected, the bacterially-expressed enzyme catalyzes the 1 alpha-hydroxylation of 25-hydroxyvitamin D3 with a Michaelis constant, K(m), value of 2.7 microM. Unexpectedly, the enzyme also hydroxylates the 1 alpha-position of 24,25-dihydroxyvitamin D3 with a K(m) of 1.3 microM, and a fourfold higher Vmax/K(m) compared with the 25-hydroxyvitamin D3 hydroxylase activity, suggesting that 24,25-dihydroxyvitamin D3 is a better substrate than 25-hydroxyvitamin D3 for 1 alpha-hydroxylase. In addition, the enzyme showed 1 alpha-hydroxylase activity toward 24-oxo-25-hydroxyvitamin D3. However, it showed only slight activity towards 23,25-dihydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3, and no detectable activity towards vitamin D3 and 24,25,26,27-tetranor-23-hydroxyvitamin D3. These results suggest that the 25-hydroxyl group of vitamin D3 is essential for the 1 alpha-hydroxylase activity and the 24-hydroxyl group enhances the activity, but the 23-hydroxyl group greatly reduced the activity. Another remarkable finding is that living recombinant E. coli cells can convert the substrates into the 1 alpha-hydroxylated products, suggesting the presence of a redox partner of 1 alpha-hydroxylase in E. coli cells.  相似文献   

5.
A cytochrome P-450 that catalyzes the 24-hydroxylation of 25-hydroxyvitamin D3 (P-450cc24: P-450cholecalciferol24) was purified to electrophoretic homogeneity from the kidney mitochondria of female rats treated with vitamin D3 (Ohyama, Y., Hayashi, S., and Okuda, K. (1989) FEBS Lett. 255, 405-408). The molecular weight was 53,000, and its absorption spectrum showed peaks characteristic of cytochrome P-450. The turnover number was 22 min-1 and the specific content was 2.8 nmol/mg protein. The N-terminal amino acid sequence, Arg-Ala-Pro-Lys-Glu-Val-Pro-Leu-, is different from the N-terminal sequence of any other cytochrome P-450s so far reported. Upon reconstitution with the electron-transferring system of the adrenal mitochondria, the enzyme showed a high activity in hydroxylating 25-hydroxyvitamin D3 as well as 1 alpha,25-dihydroxyvitamin D3 at position 24. However, the purified enzyme hydroxylated neither vitamin D3 nor 1 alpha-hydroxyvitamin D3. The enzyme was also inactive toward xenobiotics. The enzyme hydroxylated 25-hydroxyvitamin D3 at position 24 but not at 1 alpha, indicating that the enzyme is distinct from that catalyzing 1 alpha-hydroxylation. The reaction followed Michaelis-Menten kinetics, and the Km value for 25-hydroxyvitamin D3 was 2.8 microM. Both vitamin D3 and 1 alpha-hydroxyvitamin D3 inhibited the 24-hydroxylation of 25-hydroxyvitamin D3 in a competitive, concentration-dependent manner. 25-Hydroxyvitamin D3 24-hydroxylase activity was significantly inhibited by 7,8-benzoflavone, ketoconazole, and CO, whereas it was only slightly inhibited by aminoglutethimide, metyrapone, and SKF-525A. Mouse antibodies raised against the cytochrome P-450 inhibited the reaction about 70% and reacted with the P-450cc24 in immunoblotting but did not react with other kinds of cytochrome P-450 in rat liver microsomes and mitochondria.  相似文献   

6.
Side-chain oxidation of vitamin D is an important degradative pathway. In the present study we compared the enzymes involved in side-chain oxidation in normal and Hyp mouse kidney. Homogenates of normal mouse kidney catalyze the conversion of 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3, 24-oxo-25-hydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3. After subcellular fractionation, total side-chain oxidative activity, estimated by the sum of the three products synthesized per milligram protein under initial rate conditions, coincided with the mitochondrial enzyme marker succinate-cytochrome-c reductase. Treatment of normal mice with 1,25-dihydroxyvitamin D3 (1.5 ng/g) resulted in an eightfold increase in mitochondrial enzyme activity, with no change in apparent Km but a significant rise in Vmax. With 24,25-dihydroxyvitamin D3 as the substrate, normal renal mitochondria produced 24-oxo-25-hydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3, and the synthesis of these metabolites could be increased sixfold by pretreatment with 1,25-dihydroxyvitamin D3. In the Hyp mouse, the side-chain oxidation pathway showed similar subcellular distribution of enzyme activity. However, product formation from 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 was twofold greater in mutant than in normal mitochondria. Furthermore, 1,25-dihydroxyvitamin D3 pretreatment of Hyp mice resulted in a 3.4-fold increase over basal metabolism of both 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. These results demonstrate that (i) kidneys from normal and Hyp mice possess basal and 1,25-dihydroxyvitamin D3 inducible enzyme system(s) in the mitochondrial fraction, which catalyze the side-chain oxidation of 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3, and (ii) the Hyp mutation appears to perturb the renal metabolism of both substrates only in the basal state.  相似文献   

7.
To characterize 25-hydroxyvitamin D3 24-hydroxylase and 25-hydroxyvitamin D3 1-hydroxylase, the activities of the two enzymes were measured in the presence of two types of inhibitors. The effect of protein synthesis inhibitors on 25-hydroxyvitamin D3-stimulated 24-hydroxylase activity in 1-hydroxylating rat kidneys perfused in vitro was tested. Actinomycin D (4 microM) and cycloheximide (10 microM) each abolished 25-hydroxyvitamin D3 24-hydroxylase synthesis when added at the start of perfusion but not when added 4 h later; they did not affect 25-hydroxyvitamin D3 1-hydroxylase activity. The effects of cytochrome P-450 inhibitors on the two enzyme activities were then studied in vivo. Metyrapone and SKF-525A (50 mg/kg body weight) each inhibited 25-hydroxyvitamin D3 24-hydroxylase at 6 and 24 h; in contrast 1-hydroxylase increased and was 5 times the control value at 24 h. Finally, the in vitro effects of six cytochrome P-450 inhibitors at concentrations ranging from 10(-7) to 10(-3) M on enzyme activities in renal mitochondrial preparations were compared. Both enzymes were inhibited by all of the inhibitors, but inhibition of 25-hydroxyvitamin D3 24-hydroxylase was consistently greater than that of 25-hydroxyvitamin D3 1-hydroxylase. These studies demonstrate that 24-hydroxylation and 1-hydroxylation respond differently to protein synthesis inhibitors and to cytochrome P-450 inhibitors. The findings are consistent with the hypothesis that the two enzyme activities are associated with different cytochrome P-450 moieties.  相似文献   

8.
25-Hydroxyvitamin D3-24-hydroxylase (24-hydroxylase, CYP24) is an important inactivating enzyme controlling the concentrations of both active metabolites 25-hydroxyvitamin D3 and 1alpha,25-dihydroxyvitamin D3. In this paper, we demonstrate that 25-hydroxyvitamin D3 at 500 nM significantly increases the expression of 24-hydroxylase mRNA and the increase is significantly decreased by 5alpha-dihydrotestosterone (DHT) at concentrations of 1-100 nM in androgen-sensitive prostate cancer cells LNCaP. 25-Hydroxyvitamin D3 at 500 nM and 1alpha,25-dihydroxyvitamin D3 at 10 nM inhibit LNCaP cell growth, and the growth inhibition is enhanced by 1 nM DHT. Neither 25-hydroxyvitamin D3 nor 1alpha,25-dihydroxyvitamin D3 at physiological concentrations has growth effect. However, in the presence of 1 nM DHT, both 25-hydroxyvitamin D3 and 1alpha,25-dihydroxyvitamin D3 at physiological concentrations are clearly antiproliferative. These data demonstrate that DHT enhances the antiproliferative activity of Vitamin D3 hormones by inhibiting their inactivating enzyme. Most previous studies on Vitamin D3 action in cell cultures have used pharmacological concentrations of 1alpha,25-dihydroxyvitamin D3, the present results demonstrate, for the first time, that both 25-hydroxyvitamin D3 and 1alpha,25-dihydroxyvitamin D3 at physiological concentrations are active in the presence of physiological concentration of androgen. The combined use of androgen and Vitamin D3 metabolites could be a promising treatment for prostate cancer.  相似文献   

9.
The synthesis of haptens of 15alpha-hydroxyestrone, 15alpha-hydroxyestradiol, and 15alpha-hydroxyestriol (estetrol) was undertaken, to obtain specific antisera required for enzyme immunoassay. 3-(1-Carboxypropyl) ethers of these 15alpha-hydroxyestrogens were prepared and conjugated with bovine serum albumin and horseradish peroxidase. The specificity of antisera elicited against bovine serum albumin conjugates was checked by the enzyme immunoassay by using horseradish peroxidase-labeled antigen, and proved to be satisfactory in terms of cross-reactivities to related compounds.  相似文献   

10.
1. Mitochondria isolated from the kidneys of rachitic pigs have been shown to contain an active 25-hydroxyvitamin D3-1 alpha-hydroxylase. From these mitochondria a cytochrome P-450 has been solubilized with a specific content of 0.02-0.04 nmol/mg protein. 2. In the presence of a bovine adrenal NADPH-ferredoxin reductase, bovine adrenal ferredoxin and NADPH, the cytochrome P-450 supported the formation of 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. 3. The hydroxylation reaction was linear with time up to 40 min, and with the amount of enzyme up to 0.03 nmol cytochrome P-450. The pH optimum for the reaction was 7.4, and the apparent Km was 3 x 10(-10) mol/mg protein. 4. The results show that 25-hydroxyvitamin D3 is metabolized in mammals by the same enzyme system as has been demonstrated in birds.  相似文献   

11.
3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3.  相似文献   

12.
Chick kidney mitochondrial 25-hydroxyvitamin D3 24-hydroxylase has been solubilized with sodium cholate and reconstituted with NADPH, beef adrenal ferredoxin, and beef adrenal ferredoxin reductase, each component being essential for maximal 24-hydroxylase activity. The product 24(R),25-dihydroxyvitamin D3 was identified by cochromatography with synthetic compound on straight-phase and reversed-phase high-performance liquid chromatography and by periodate oxidation. The enzyme has an apparent Km for 25-hydroxyvitamin D3 of 0.67 microM. At 1 microM 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3 production is linear with time for up to 15 min and with protein concentrations of up to 2 mg/mL. The antioxidant diphenyl-p-phenylenediamine (1.3 X 10(-4) M) has no effect on this reaction. Reconstituted 24-hydroxylase activity is enhanced by the addition of NaCl and KCl up to 100 mM, with higher concentrations having an inhibitory effect. 1 alpha-Hydroxylase is not present in this preparation from vitamin D replete chicks. The similarities of this reconstituted system to the 25-hydroxyvitamin D3 1 alpha-hydroxylase and the adrenal systems suggest that the 25-hydroxyvitamin D3 24-hydroxylase is also a cytochrome P-450 type mixed-function oxidase.  相似文献   

13.
A new vitamin D3 metabolite was isolated in pure form (18.2 micrograms) from the serum of rats given large doses (two doses of 26 mumol/rat) of vitamin D3. The new metabolite has been unequivocally identified as 3 beta, 25-dihydroxy-9,10-seco-5,7,10(19)-cholestatrieno-26,23-peroxylactone by ultraviolet absorption spectrophotometry, Fourier transform infrared spectrophotometry, mass spectrometry, field desorption mass spectrometry, and specific chemical reaction with triphenyl phosphine. The stereochemical configuration at the C-23 and c-25 positions of the 25-hydroxyvitamin D3-26-23-peroxylactone was definitely determined to be the 23(S)25(R),25-hydroxyvitamin D3-26,23-peroxylactone is suggested for this metabolite. The isolation involved chloroform-methanol extraction and four column chromatographic procedures. The metabolite purification and elution position on these columns were followed by UV measurement at 264 nm. This metabolite was ultimately resolved from the previously known 25-hydroxyvitamin D3-26,23-lactone by high pressure liquid chromatography using a Zorbax Sil column. The 25-hydroxyvitamin D3-26,23-peroxylactone was converted upon storage at room temperature or -20 degrees C into the 25-hydroxyvitamin D3-26,23-lactone. Since under the conditions of this isolation only the 26,23-peroxylactone and no 26,23-lactone of 25-hydroxyvitamin D3 was present in the rat serum, this suggests that the 25-hydroxyvitamin D3-26,23-peroxylactone is the naturally occurring metabolite.  相似文献   

14.
Stimulation of 25-hydroxyvitamin D3-1alpha-hydroxylase by phosphate depletion.   总被引:15,自引:0,他引:15  
The ability of low phosphorus diets to stimulate the activity of the 25-hydroxyvitamin D3-1alpha-hydroxylase was tested in the chick. Feeding low phosphorus diets for 2 weeks resulted in a marked increase in enzyme activity relative to chicks fed a normal phosphorus diet. Stimulation of the 25-hydroxyvitamin D3-1alpha-hydroxylase activity by low phosphorus diets, however, was not as great as that observed with a low calcium diet. The low phosphorus and low calcium diets probably results from increased 1,25-dihydroxyvitamin D3 synthesis, whereas the stimulation by phosphate deprivation is only partly the result of increased 1,25-dihydroxyvitamin D3 production.  相似文献   

15.
Recently, epimerization of the hydroxyl group at C-3 has been identified as a unique metabolic pathway of vitamin D compounds. We measured C-3 epimerization activity in subcellular fractions prepared from cultured cells and investigated the basic properties of the enzyme responsible for the epimerization. C-3 epimerization activity was detected using a NADPH-generating system containing glucose-6-phosphate, NADP, glucose-6-phosphate dehydrogenase, and Mg(2+). The highest level of activity was observed in a microsomal fraction prepared from rat osteoblastic UMR-106 cells but activity was also observed in microsomal fractions prepared from MG-63, Caco-2, Hep G2, and HUH-7 cells. In terms of maximum velocity (V(max)) and the Michaelis constant (K(m)), 25-hydroxyvitamin D(3) [25(OH)D(3)] exhibited the highest specificity for the epimerization at C-3 among 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], 25(OH)D(3), 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)], and 22-oxacalcitriol (OCT). The epimerization activity was not inhibited by various cytochrome P450 inhibitors and antiserum against NADPH cytochrome P450 reductase. Neither CYP24, CYP27A1, CYP27B1 nor 3(alpha-->beta)hydroxysteroid epimerase (HSE) catalyzed the epimerization in vitro. Based on these results, the enzyme(s) responsible for the epimerization of vitamin D(3) at C-3 are thought to be located in microsomes and different from cytochrome P450 and HSE.  相似文献   

16.
Vitamin D supplemented rats produce a metabolite of 25-hydroxy[3 alpha-3H]vitamin D3 that is easily separated from known metabolites by using high-performance liquid chromatography. The production of this metabolite in vivo as well as 1,25-dihydroxyvitamin D3, 24(R),25-dihydroxyvitamin D3, and 25-hydroxyvitamin D3 26,23-lactone is largely if not totally eliminated by nephrectomy. Kidney homogenates from vitamin D supplemented chickens incubated with 25-hydroxyvitamin D3 produce significant quantities of the new, unknown metabolite. This metabolite was isolated in pure form from such incubation mixtures by using both straight-phase and reversed-phase high-performance liquid chromatography. This metabolite has been positively identified as 23,25-dihydroxyvitamin D3 by ultraviolet absorption spectrophotometry, mass spectrometry, and derivatization. This structure was confirmed by chemical synthesis of both C-23 stereoisomers. Although the natural product exactly comigrates with one of the synthetic isomers, the exact stereochemistry of the natural product remains unknown. It is possible that this new metabolite is an intermediate in the biosynthesis of 25-hydroxyvitamin D3 26,23-lactone.  相似文献   

17.
The biological activity of 24,24-difluoro-25-hydroxyvitamin D3 was assessed using elevation of serum phosphorus and healing of rickets of vitamin D-deficient rats. Various levels of 24,24-difluoro-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 were administered daily for 2 weeks in the dose range of 6.5 to 3250 pmol after feeding rats a low phosphorus, vitamin D-deficient diet for 3 weeks. Vitamin D3 was concurrently tested at dose levels of 650 and 3250 pmol. 24,24-Difluoro-25-hydroxyvitamin D3 is approximately equipotent with 25-hydroxyvitamin D3 in stimulation of growth, mineralization of rachitic bone, and elevation of serum inorganic phosphorus. Radiological manifestations of rickets were also equally improved by 24,24-difluoro-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3. Compared with vitamin D3, these compounds were approximately 5 to 10 times more active in mineralization using rats on a low phosphorus, vitamin D-deficient diet. The functional role, if any, for 24-hydroxylated vitamin D compounds, such as 24,25-dihydroxyvitamin D3, therefore remains obscure. It appears that vitamin D compounds that cannot be 24-hydroxylated evoke no disorder in bone mineralization.  相似文献   

18.
1. A highly specific and accurate method based on isotope dilution-mass spectrometry was used for characterization of the renal 25-hydroxyvitamin D3 1 alpha-hydroxylase in untreated guinea pigs with a normal vitamin D status. In previous work, the properties of the enzyme had been determined in rachitic animals only. 2. With intact mitochondria, the reaction required the presence of citric acid-cycle intermediates. The uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone had an inhibitory effect on the isocitrate-supported reaction, indicating that energy-dependent transhydrogenation is of importance. Mitochondrial respiratory-chain inhibitors (cyanide, rotenone, antimycin A) had no effect on the hydroxylation. CO had an inhibitory effect, suggesting participation of a species of cytochrome P-450 in the reaction. A fraction solubilized from mitochondria by cholate became catalytically active in 1 alpha-hydroxylation of 25-hydroxyvitamin D3 after addition of ferredoxin and ferredoxin reductase. The isocitrate-supported reaction catalysed by crude mitochondria had an apparent Km of about 1 microM. 3. An atmosphere containing 50% O2 was found to be necessary for optimal activity. It is thus possible that O2 may be a limiting factor under normal conditions in vivo. 4. The results demonstrate that the mammalian renal 25-hydroxyvitamin D3 1 alpha-hydroxylase is a cytochrome P-450-dependent mixed-function oxidase with properties similar to those previously reported for the same enzyme system in chicken. The present assay and animal system seem to be suitable for further studies on the mechanism of regulation of the mammalian renal 25-hydroxyvitamin D3 1 alpha-hydroxylase under conditions when the vitamin D status is normal.  相似文献   

19.
Deficiency of serum levels of 25-hydroxyvitamin D(3) has been correlated with increased risk of infectious diseases such as tuberculosis and influenza. A plausible reason for this association is that expression of genes encoding important antimicrobial proteins depends on concentrations of 1,25-dihydroxyvitamin D(3) produced by activated immune cells at sites of infection, and that synthesis of 1,25-dihydroxyvitamin D(3) is dependent on the availability of 25-hydroxyvitamin D(3). Thus, increasing the availability of 25(OH)D(3) for immune cell synthesis of 1,25-dihydroxyvitamin D(3) at sites of infection has been hypothesized to aid in clearance of the infection. This report details the treatment of an acute intramammary infection with infusion of 25-hydroxyvitamin D(3) to the site of infection. Ten lactating cows were infected with in one quarter of their mammary glands. Half of the animals were treated intramammary with 25-hydroxyvitamin D(3). The 25-hydroxyvitamin D(3) treated animal showed significantly lower bacterial counts in milk and showed reduced symptomatic affects of the mastitis. It is significant that treatment with 25-hydroxyvitamin D(3) reduced the severity of an acute bacterial infection. This finding suggested a significant non-antibiotic complimentary role for 25-hydroxyvitamin D(3) in the treatment of infections in compartments naturally low in 25-hydroxyvitamin D(3) such as the mammary gland and by extension, possibly upper respiratory tract infections.  相似文献   

20.
EK Tang  EW Tieu  RC Tuckey 《The FEBS journal》2012,279(19):3749-3761
CYP27B1 is a mitochondrial cytochrome P450 that catalyses the hydroxylation of 25-hydroxyvitamin D3 at the C1α-position to give the hormonally active form of vitamin D3, 1α,25-dihydroxyvitamin D3. We successfully expressed human CYP27B1 in Escherichia?coli and partially purified this labile enzyme and carried out a detailed characterization of its kinetic properties in a reconstituted membrane environment. The phospholipid concentration did not affect the enzyme activity in the vesicle-reconstituted system, although it was influenced by the phospholipid composition, with the addition of cardiolipin lowering the K(m) for 25-hydroxyvitamin D3. These data are consistent with the enzyme accessing substrate from the hydrophobic domain of the vesicle membrane. Cardiolipin also caused the appearance of inhibition of activity at high substrate concentrations. This substrate inhibition fitted a model for one catalytic and two inhibitory sites on the enzyme for the binding of substrate. The K(m) for human adrenodoxin was observed to decrease with decreasing substrate concentration, with the catalytic efficiency (k(cat) /K(m) ) being largely independent of adrenodoxin concentration. Human CYP27B1 was also active on 25-hydroxyvitamin D(2) and on intermediates of the CYP24A1-mediated inactivation pathway, 24R,25-dihydroxyvitamin D3, 24-oxo-25-hydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3, with all these substrates showing comparable k(cat) values of 50-71?min(-1) , similar to 25-hydroxyvitamin D3. The latter two substrates gave higher K(m) values than that for 25-hydroxy-vitamin D3. The present study shows that human CYP27B1 can be partially purified in an active form with the enzyme displaying high activity towards a range of substrates in a phospholipid vesicle-reconstituted system that mimics the inner-mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号