首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
R B Harris  I B Wilson 《Peptides》1985,6(3):393-396
We are examining the substrate specificity of atrial dipeptidyl carboxyhydrolase, a membrane-bound metallo enzyme that we isolated from bovine atrial tissue homogenates. This enzyme readily removes the dipeptide, Phe-Arg, from Bz-Gly-Ser-Phe-Arg, a stand-in substrate for atriopeptin II, one of several atrial natriuretic factors. We now report that the atrial enzyme cleaves the C-terminal dipeptide, Phe-Arg, from atriopeptin II to form atriopeptin I. The km (pH 7.5) is 25 microM and the ratio of relative Vmax/km as a measure of substrate specificity indicates that atriopeptin II is a 240-fold better substrate than Bz-Gly-His-Leu. Only Phe-Arg was detected as a hydrolysis product, indicating that sequential cleavage of Asn-Ser from atriopeptin II does not occur, and that atriopeptin I is not a substrate. Bz-Gly-Asn-Ser was as good a substrate for the atrial enzyme as Bz-Gly-His-Leu, but Bz-Cys(bzl)-Asn-Ser was not hydrolyzed. This result suggests that the presence of an intact disulfide bond or an S-alkylated residue in the P1 position of a substrate (as in atriopeptin I) prevents hydrolysis by the atrial enzyme. Comparative studies were made with the angiotensin I converting enzyme. Atriopeptin II was not a substrate. The stand-in substrates for atriopeptin I, Bz-Cys(bzl)-Asn-Ser and Bz-Gly-Asn-Ser were barely hydrolyzed, which by itself suggests that atriopeptin I is not a substrate of the angiotensin converting enzyme. Our results strongly suggest that atriopeptin II is converted to atriopeptin I and that hydrolysis is mediated by the atrial enzyme. The angiotensin I converting enzyme plays no role in processing these peptides. We suggest that the atrial enzyme be named atrial peptide convertase.  相似文献   

2.
Atriopeptins are circulating peptide hormones which are secreted by atrial tissue and act at the kidney. Because the atriopeptins survive passage through the pulmonary circulation, they also may be involved in the modulation of airway or pulmonary vascular smooth muscle tone. Using in vitro organ bath techniques, atriopeptins were found to induce potent concentration-dependent relaxation of isolated guinea pig trachea, and pulmonary artery with a rank order of potency: atriopeptin III greater than atriopeptin II greater than atriopeptin I. Atriopeptin-induced smooth muscle relaxation was observed to be a direct response since it was not mediated by activation of relaxant VIP receptors, beta-adrenergic receptors, or H2 receptors nor affected by cyclooxygenase inhibition or denuding of the vasculature or trachea of endothelial and epithelial cells. The time course of atriopeptin II-induced relaxation of the pulmonary artery was transient in contrast to the prolonged relaxations on the trachea. The transient relaxant responses of atriopeptin II on pulmonary artery were not due to metabolism of atriopeptin II to atriopeptin I by angiotensin-converting enzyme since pretreatment with captopril did not augment the response. These results seem to indicate that distinct atriopeptin receptors may exist in airway and pulmonary arterial smooth muscle and that activation of these relaxant receptors may play an important role in the regulation of pulmonary vascular and bronchomotor tone.  相似文献   

3.
Recently, the concept of an atrial endocrine system has expanded to that of a cardiac endocrine system. In support of this expanded view, the cardiac ventricles have been demonstrated to be a source of the atrial hormone (atriopeptin). Markedly enhanced ventricular expression of atriopeptin has been shown to be associated with cardiac hypertrophy. In this study, we measured the levels of atriopeptin in atrial and extra-atrial tissues of the BIO 14.6 hamster, a genetic model of cardiomyopathy and congestive heart failure. The BIO 14.6 hamsters (approximately 1 year of age) weighed 7.4% more than their age-matched controls, an indication of edema, and showed overt cardiac hypertrophy (control vs. BIO 14.6 heart weight: .556 +/- .045 g vs. .990 +/- .043 g). A survey of extra-atrial tissues indicated that pulmonary and ventricular tissue from both control and BIO 14.6 hamsters possessed measurable levels of immunoreactive atriopeptin. However, a comparison of atriopeptin levels in the lungs and cardiac ventricles, respectively, of control and BIO 14.6 hamsters revealed profound differences. Pulmonary atriopeptin levels were 30-fold greater, and ventricular atriopeptin levels were 13.3-fold greater, in the BIO 14.6 hamsters. In addition, the total content of atriopeptin was 2.2-fold greater in the atria of BIO 14.6 hamsters. Dot blot analysis indicated that atriopeptin mRNA levels were greater in the atria (3.4-fold) and ventricles (17.9-fold) of BIO 14.6 hamsters. A similar analysis of atriopeptin mRNA in pulmonary tissue proved inconclusive. The function of the marked increase of pulmonary and ventricular atriopeptin is unknown; however, it is plausible that the peptide hormone serves to regulate the formation of pulmonary and peripheral edema.  相似文献   

4.
An increase in atrial pressure has been shown to cause an increase in the concentration of atrial peptides (atriopeptin) in plasma. We therefore hypothesized that a reduction in atrial pressure would decrease the concentration of atriopeptin in plasma. In formulating this hypothesis we assumed that changes in the concentration of other circulating hormones or changes in cardiac nerve activity during hemorrhage would not affect the secretion of atriopeptin. To test the hypothesis, we bled sham-operated conscious dogs at a rate of 0.8 ml.kg-1.min-1 to decrease right and left atrial pressures. Hemorrhage was continued until a total of 30 ml of blood per kilogram body weight had been removed. Identical experiments were performed on conscious cardiac-denervated dogs. The concentration of plasma atriopeptin was decreased in each group of dogs after 10 ml of blood per kilogram of body weight had been removed, but the decrease achieved statistical significance only in the cardiac-denervated dogs. Further hemorrhage, however, produced no further decreases in circulating atriopeptin in either group even though atrial pressures continued to decline as more blood was removed. A comparison of the atriopeptin response to hemorrhage revealed no significant difference between the sham-operated and cardiac-denervated dogs, thus providing no evidence for a specific effect of cardiac nerves on atriopeptin secretion during hemorrhage. Our results demonstrate that the relationship between atrial pressure and plasma atriopeptin that has been observed repeatedly during atrial stretch is not evident during relatively slow, prolonged hemorrhage. There is, however, a small decline in circulating atriopeptin during the initial stage of hemorrhage that could be of biological significance.  相似文献   

5.
Just the beginning: novel functions for angiotensin-converting enzymes   总被引:14,自引:0,他引:14  
Cardiovascular disease is predicted to be the commonest cause of death worldwide by the year 2020. Diabetes, smoking and hypertension are the main risk factors. The renin-angiotensin system plays a key role in regulating blood pressure and fluid and electrolyte homeostasis in mammals. The discovery of specific drugs that block either the key enzyme of the renin-angiotensin system, angiotensin-converting enzyme (ACE), or the receptor for its main effector angiotensin II, was a major step forward in the treatment of hypertension and heart failure. In recent years, however, the renin-angiotensin system has been shown to be a far more complex system than initially thought. It has become clear that additional peptide mediators are involved. Furthermore, a new ACE, angiotensin-converting enzyme 2 (ACE2), has been discovered which appears to negatively regulate the renin-angiotensin system. In the heart, ACE2 deficiency results in severe impairment of cardiac contractility and upregulation of hypoxia-induced genes. We shall discuss the interplay of the various effector peptides generated by angiotensin-converting enzymes ACE and ACE2, highlighting the role of ACE2 as a negative regulator of the renin-angiotensin system.  相似文献   

6.
D F Soler  R B Harris 《Peptides》1989,10(1):63-68
Atrial dipeptidyl carboxyhydrolase readily converts one atrial natriuretic peptide, atriopeptin II (Ser103-Arg125 peptide), to another, atriopeptin I (Ser103-Ser123 peptide), by selective removal of the C-terminal dipeptide, Phe-Arg. The atrial peptides possess natriuretic, diuretic, smooth muscle relaxant, and cardiodynamic properties and their existence has shown the mammalian heart to be an endocrine organ. After inactivating the bovine atrial enzyme with EDTA, activity is restored by the addition of Co+2, Zn+2 and Mn+2 but not by Cu+2, Mg+2, Ca+2, or Cd+2. The enzyme is thus likely to be a zinc-metallo proteinase. In addition to its dipeptidyl activity, the enzyme also displays tripeptidyl carboxyhydrolase activity with atriopeptin III (Ser103-Try126 peptide) as substrate. The hydrolytic products resulting from tripeptidyl cleavage are atriopeptin I and Phe-Arg-Tyr. However, with [mercaptopropionyl105,(D)Ala107]-atriopeptin III-NH2 peptide (a potent agonist of atriopeptin III) as substrate, the enzyme acts exclusively as a tripeptidyl carboxyhydrolase. To examine the basis for this shift in cleavage point, pentapeptides based on the C-terminal sequence of atriopeptin III were prepared; a C-terminal Tyr or Tyr-NH2 residue is not sufficient to cause the change in cleavage point. The amidated pentapeptide is not a substrate but is a competitive inhibitor of hydrolysis of the corresponding free-acid peptide.  相似文献   

7.
Human heart angiotensin-converting enzyme has been purified by affinity chromatography on immobilized N-[1(S)-carboxy-5-aminopentyl]-Gly-Gly. The isolation procedure permitted a 1650-fold-purified enzyme to be obtained. The specific activity of angiotensin-converting enzyme was 38 units per mg protein. The molecular weight of enzyme determined by polyacrylamide gel electrophoresis in denaturing conditions was 150,000. The isoelectric point (5.3) of the enzyme was determined by chromatofocusing. The Km values of the enzyme for Bz-Gly-His-Leu and angiotensin I are 1.2 mM and 10 microM, respectively. Substrate inhibition of heart angiotensin-converting enzyme with a K's of 14 mM has been shown. The human heart enzyme is inhibited by SQ 20881 (IC50 = 40 nM). It was shown that NaCl, CaCl2 as well as Na2SO4 in the absence of Cl- are activators of the heart angiotensin-converting enzyme, whereas CH3COONa and NaNO3 have no effect on a catalytic activity of the enzyme.  相似文献   

8.
An angiotensin-converting enzyme was isolated from human heart using N[-1(S)-carboxy-5-aminopentyl]glycyl-glycine as an affinity adsorbent. The isolation procedure resulted in an enzyme purified 1650-fold. The enzyme specific activity was 38.0 u./mg protein, Mr = 150 kD. The pH optimum for the angiotensin-converting enzyme towards Hip-His-Leu lies at 7.8, Km = 1.2 mM. The enzyme was inhibited by the substrate (Ks' = 14 mM). The enzyme effectively catalyzed the hydrolysis of angiotensin I (Km = 10 microM; kcat = 250 s-1). NaCl, CaCl2 as well as Na2SO4 in the absence of Cl- activated the enzyme, whereas CH3COONa and NaNO3 did not influence the enzyme activity. It was found that the bradykinin-potentiating factor inhibited the cardiac angiotensin-converting enzyme with IC50 = 4.0 X 10(-8) M.  相似文献   

9.
Manipulations of salt and water intake influenced the atriopeptin content in the atria and plasma of rats. Plasma levels of atriopeptin varied in proportion with dietary salt intake. In contrast, cardiac levels of atriopeptin varied inversely with the amount of salt in the diet. Acute stimulation of atriopeptin release can be produced by treatments which elevate atrial pressure, including atrial stretch, volume overloading, water immersion, and vasoconstrictor agents. Vasopressin-stimulated atriopeptin release preferentially depleted right atrial stores. In spite of the initial differences in cardiac stores of atriopeptin in the rats on different diets, there were no major differences in the amount of atriopeptin released in response to vasopressin stimulation. These data suggest that there is a functional excess of cardiac atriopeptin stores. We also examined the atrial and plasma atriopeptin content in the Dahl salt-sensitive and resistant rats to determine whether the development of hypertension in the Dahl sensitive rats is associated with abnormalities in basal or stimulated levels of atriopeptin. The effects of dietary salt intake on basal and stimulated atriopeptin levels in both the Dahl sensitive and resistant rats were similar to those observed in normal rats, suggesting that abnormalities in atriopeptin content do not contribute to the etiology of hypertension in the Dahl salt-sensitive rat.  相似文献   

10.
A new membrane-bound dipeptidyl carboxyhydrolase has been identified in bovine atrial tissue, and has been partially purified after extraction with Triton X-100. This enzyme, found in quantities of 0.01-0.03 units/g tissue assayed with Bz-Gly-His-Leu, is potentially capable of hydrolyzing atriopeptin II to atriopeptin I. The enzyme is located in the microsomal fraction and in sucrose density fractions enriched for atrial granules. The enzyme is completely inhibited by reagents for heavy metals such as EDTA, o-phenanthroline, dithiothreitol, and mercaptoethanol. The latter two compounds are also disulfide reagents. The atrial enzyme is also inhibited by D-2-methyl-3-mercaptopropanoyl-L-Pro(Captopril), 3-mercaptopropanoyl-L-Pro, 2-D-methylsuccinyl-L-Pro, and bradykinin potentiating factor, all inhibitors of the angiotensin I-converting enzyme. However, the atrial enzyme differs from the converting enzyme in a number of kinetic and molecular properties. Its activity increases with ionic strength, but the atrial enzyme does not have a chloride dependence for Bz-Gly-His-Leu hydrolysis; the pH optimum, 7.3, is slightly lower, and it is 5500 times less sensitive to the very potent converting enzyme inhibitor, D-Cys-L-Pro. The strokes radius of the atrial enzyme is 5.00 nm as compared to 4.10 nm, and its molecular weight is 240,000 compared to 145,000. Ventricular tissue, which does not contain the atrial peptides, does not contain the dipeptidyl carboxyhydrolase enzyme.  相似文献   

11.
Long-term treatment with angiotensin-converting enzyme inhibitors reduces post-infarction morbidity and mortality in patients with left ventricular (LV) systolic dysfunction or symptomatic heart failure. Until recently, the effect of such treatment in patients with preserved LV function has not been known. The results from the Heart Outcome Prevention Evaluation trial have indicated that long-term treatment with ramipril leads to a significant reduction in cardiovascular events in patients with atherosclerotic disease, including those with prior myocardial infarction and preserved LV function. These results suggest that long-term angiotensin-converting enzyme inhibition should also be considered in post-infarction patients with normal cardiac function.  相似文献   

12.
A peptidyl dipeptidase-4 (bacterial PDP-4) was purified to near homogeneity from a supernatant of Pseudomonas maltophilia extracellular medium. Bacterial PDP-4 is a single-polypeptide-chain enzyme, 82 kDa, with an alkaline isoelectric point. Peptides susceptible to hydrolysis by bacterial PDP-4 include angiotensin 1, bradykinin, enkephalins, atriopeptin 2, and smaller synthetic peptides. N-acylated tripeptides are hydrolyzed, but free tripeptides are not. A free carboxy terminus is required for hydrolysis. Peptides with ultimate and penultimate Pro residues are not hydrolyzed. The enzyme does not require an anion for activity. Bacterial PDP-4 was inhibited by EDTA and the dipeptide Phe-Arg. Thiorphan was an inhibitor only at levels well above those required for inhibition of neutral metalloendopeptidase (NEP), an enzyme for which thiorphan is specific. A second NEP and thermolysin inhibitor, phosphoramidon, did not inhibit bacterial PDP-4. The potent angiotensin-converting enzyme inhibitor lisinopril was not inhibitory. Bacterial PDP-4 is distinguished from a similar enzyme from Escherichia coli, which is not susceptible to EDTA inhibition, and one from Corynebacterium equi, which hydrolyzes free tripeptides. These data indicate that the bacterial PDP-4 catalytic site is unlike those of other enzymes that function either wholly or in part as peptidyl dipeptidases.  相似文献   

13.
We recently found and partially purified a new membrane-bound metallo dipeptidyl dipeptidase from bovine atrial tissue homogenates (Harris, R.B. & Wilson, I.B. (1984) Arch. Biochem. Biophys. 233, 667-675). We suggested that this enzyme was capable of cleaving the dipeptide, phenylalanyl-arginine from the C-terminus of atriopeptin II to give atriopeptin I. The atriopeptins are two atrial natriuretic peptides and the existence of the atrial peptide system has implicated the mammalian heart as an endocrine organ. The tetrapeptide benzoyl-glycyl-seryl-phenylalanyl-arginine was synthesized because it contains the C-terminal tripeptide sequence of atriopeptin II and should be useful to test the roles of the atrial enzyme and angiotensin I-converting enzyme in processing the atrial peptides. We found that for the atrial enzyme, Vmax was 13-fold higher and Km 7-fold-lower for this stand-in substrate than for benzoyl-glycyl-histidyl-leucine, a standard substrate used to measure converting enzyme activity. The ratio of Vmax/Km as a measure of substrate specificity indicates that the stand-in substrate is 86-fold better than benzoyl-glycyl-histidyl-leucine. In contrast, the stand-in substrate is a 20-fold poorer substrate for the converting enzyme than benzoyl-glycyl-histidyl-leucine. With the stand-in substrate, the converting enzyme showed pronounced substrate inhibition. An effective Vmax and Km were calculated using only concentrations of S below the optimum substrate concentration. These results confirm that the atrial enzyme is distinct from the converting enzyme. They also suggest that the conversion of atriopeptin II to atriopeptin I is a physiological process that is mediated by this enzyme.  相似文献   

14.
BackgroundThere is growing interest in sex differences and RAS components. However, whether gender influences cardiac angiotensin I-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity is still unknown. In the present work, we determined the relationship between ACE and ACE2 activity, left ventricular function and gender in spontaneously hypertensive rats (SHRs).ConclusionOvariectomy leads to increased cardiac hypertrophy, ACE2 activity, PLB expression and PLB to SERCA2a ratio, and worsening of hemodynamic variables, whereas in males the removal of testosterone has the opposite effects on RAS components.  相似文献   

15.
Human angiotensin-converting enzyme has been purified, in a single chromatographic step, using a novel N-carboxyalkyl dipeptide CA-GlyGly (N-[1(S)-carboxy-5-aminopentyl]glycylglycine) synthesised in our laboratory. CA-GlyGly is a weak competitive inhibitor, Ki = 0.18 mM, and its inhibitory profile is markedly pH-dependent. Human lung and kidney angiotensin-converting enzyme were solubilised with Triton X-100 and after ammonium sulphate fractionation the crude extract was applied to a column containing CA-GlyGly coupled to agarose via a 2.8 nm spacer group. Electrophoretically pure human angiotensin-converting enzyme could be eluted by raising the pH of the chromatography buffer from 7.50 to 9.50. The specific activity of human angiotensin-converting enzyme purified from lung was 104 units/mg, while that from kidney was 88 units/mg. Molecular weight for both enzymes was estimated to be 160,000. The Km with respect to hippuryl-L-histidyl-L-leucine was 1.9 mM in the case of lung angiotensin-converting enzyme and 1.7 mM in that of kidney angiotensin-converting enzyme, while for the substrate angiotensin I Km values were 62 microM and 76 microM, respectively. Hydrolysis of either substrate was chloride-dependent and both enzymes were strongly inhibited by captopril.  相似文献   

16.
Recently we reported the presence of both the guanylyl cyclase-linked (116 kDa) and the ANF-C (66 kDa) atrial natriuretic peptide receptors in the rat liver. Since ANF 103-125 (atriopeptin II) stimulates cGMP production in livers and because cGMP has previously been shown to mimic the actions of cAMP in regulating hepatic carbohydrate metabolism, studies were performed to investigate the effects of atriopeptin II on hepatic glycolysis and gluconeogenesis. Additionally, employing analogs of atrial natriuretic hormone [des-(Q116, S117, G118, L119, G120) ANF 102-121 (C-ANF) and des-(C105,121) ANF 104-126 (analog I)] which bind only the ANF-C receptors, the role of the ANF-C receptors in the hepatic actions of atriopeptin II was evaluated. In perfused livers of fed rats atriopeptin II, but not C-ANF and analog I, inhibited hepatic glycolysis and stimulated glucose production. Moreover, analog I did not alter the ability of atriopeptin II to inhibit hepatic glycolysis. Atriopeptin II, but not C-ANF and analog I, also stimulated cGMP production in perfused rat livers. Furthermore, while atriopeptin II inhibited the activity ratio of pyruvate kinase by 30%, C-ANF did not alter hepatic pyruvate kinase activity. Finally, in rat hepatocytes, atriopeptin II stimulated the synthesis of [14C]glucose from [2-14C]pyruvate by 50% and this effect of atriopeptin II was mimicked by the exogenously supplied cGMP analog, 8-bromo cGMP. Thus atriopeptin II increases hepatic gluconeogenesis and inhibits glycolysis, in part by inhibiting pyruvate kinase activity, and the effects of atriopeptin II are mediated via activation of guanylyl cyclase-linked ANF receptors which elevate cGMP production.  相似文献   

17.
Hafizi S  Chester AH  Yacoub MH 《Peptides》2004,25(6):1031-1033
The vasoactive peptide angiotensin II (Ang II) has been implicated as a mediator of myocardial fibrosis. We carried out a comparative investigation of the effects of Ang II and its precursor Ang I on collagen metabolism and proliferation in cultured human cardiac fibroblasts. Cardiac fibroblasts responded to both Ang I and Ang II with concentration-dependent increases in collagen synthesis but no proliferation. The stimulatory effect of Ang II was abolished by the AT(1) receptor antagonist losartan but not the AT(2) receptor antagonist PD123319. The response to Ang I was not affected by either antagonist, nor by the angiotensin-converting enzyme (ACE) inhibitor captopril. In conclusion, Both Ang I and Ang II stimulate collagen synthesis of human cardiac fibroblasts, the effect of Ang II occurring via the AT(1) receptor whilst Ang I appears to exert a direct effect through non-Ang II-dependent mechanisms. These results suggest distinct roles for angiotensin peptides in the development of cardiac fibrosis.  相似文献   

18.
It was found that the molecular mass of the angiotensin-converting enzyme from seal (Phoca groenlandica) lungs determined by electrophoresis in 7.5% PAAG in the presence of sodium dodecyl sulfate is 150 kD. The enzyme has a pH optimum with respect to hippuryl-L-histidyl-L-leucine at 7.3--7.5; KM is 1.2 mM. The enzyme is inhibited by the substrate to form a nonproductive ES2 complex with the dissociation constant (Ks') of 4.8 mM. The activation of the seal angiotensin-converting enzyme in the presence of NaCl was studied. The bradykinin-potentiating factor (SQ 20881) inhibits the seal enzyme with a high efficiency (IC50 = 2.5.10(-8) M). Monoclonal antibodies to the angiotensin-converting enzyme from human lungs do not interact with its seal lung counterpart, which points to the species specificity of the angiotensin-converting enzyme.  相似文献   

19.
血管紧张素转换酶2(ACE2)和Mas受体的发现使人们对肾素-血管紧张素(RAS)有了更全面的认识。ACE2可水解血管紧张素Ⅰ和血管紧张素Ⅱ直接或间接生成血管紧张素1-7(Ang 1-7),并与高血压的形成密切相关。Ang 1-7主要通过Mas受体引起血管舒张、抑制细胞增殖。ACE2-Ang1-7-Mas轴的发现为RAS的研究、高血压等心血管疾病的防治和新药开发提供了新的思路和方向。  相似文献   

20.
Isolation of human liver angiotensin-converting enzyme by chromatofocusing   总被引:1,自引:0,他引:1  
Angiotensin-converting enzyme (EC 3.4.15.1) has been isolated from human liver by chromatofocusing. The isolation procedure permitted us to obtain a 9000-fold purified enzyme with a 22% yield. Specific activity of the angiotensin-converting enzyme was 10 units/mg of protein. The molecular mass of enzyme determined by polyacrylamide gel electrophoresis under denaturing conditions was 150,000. The isoelectric point (4.2-4.3) was also determined by chromatofocusing. The Km values of the enzyme for hippuryl-L-histidyl-L-leucine and N-benzyloxycarbonyl-L-phenylalanyl-L-histidyl-L-leucine are 5000 and 125 microM, respectively. The human liver angiotensin-converting enzyme is inhibited by bradykinin-potentiating factor SQ 20881 (IC50 = 18 nM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号