共查询到20条相似文献,搜索用时 0 毫秒
1.
Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. 总被引:10,自引:0,他引:10 下载免费PDF全文
S Colombo P Ma L Cauwenberg J Winderickx M Crauwels A Teunissen D Nauwelaers J H de Winde M F Gorwa D Colavizza J M Thevelein 《The EMBO journal》1998,17(12):3326-3341
Adenylate cyclase activity in Saccharomyces cerevisiae is dependent on Ras proteins. Both addition of glucose to glucose-deprived (derepressed) cells and intracellular acidification trigger an increase in the cAMP level in vivo. We show that intracellular acidification, but not glucose, causes an increase in the GTP/GDP ratio on the Ras proteins independent of Cdc25 and Sdc25. Deletion of the GTPase-activating proteins Ira1 and Ira2, or expression of the RAS2(val19) allele, causes an enhanced GTP/GDP basal ratio and abolishes the intracellular acidification-induced increase. In the ira1Delta ira2Delta strain, intracellular acidification still triggers a cAMP increase. Glucose also did not cause an increase in the GTP/GDP ratio in a strain with reduced feedback inhibition of cAMP synthesis. Further investigation indicated that feedback inhibition by cAPK on cAMP synthesis acts independently of changes in the GTP/GDP ratio on Ras. Stimulation by glucose was dependent on the Galpha-protein Gpa2, whose deletion confers the typical phenotype associated with a reduced cAMP level: higher heat resistance, a higher level of trehalose and glycogen and elevated expression of STRE-controlled genes. However, the typical fluctuation in these characteristics during diauxic growth on glucose was still present. Overexpression of Ras2(val19) inhibited both the acidification- and glucose-induced cAMP increase even in a protein kinase A-attenuated strain. Our results suggest that intracellular acidification stimulates cAMP synthesis in vivo at least through activation of the Ras proteins, while glucose acts through the Gpa2 protein. Interaction of Ras2(val19) with adenylate cyclase apparently prevents its activation by both agonists. 相似文献
2.
The number of revertants with restored ability to form colony increases in a time-dependent manner during long-term selective starvation of dense mutant microbial cultures. This is due to starvation-associated (also called adaptive) mutations that arise in a replication independent manner. Here we report that in Saccharomyces cerevisiae the frequency of starvation-associated reversions of mutant genes whose products are necessary for amino acids biosynthesis are influenced by Ras2/cAMP signaling pathway. This signaling pathway is a yeast general regulatory pathway involved in nutritional sensing, UV response, sporulation control and life span control and its changes are manifested in both, cell cycle and life cycle. Inactivation of the RAS2 gene causes an increase in number of starvation-associated revertants in comparison to an isogenic wild type strain and a strain with constitutively activated Ras2/cAMP signaling pathway. Therefore, we suggest that starvation-associated mutagenesis is different from spontaneous mutagenesis and is related to the cellular capacity to adopt distinct physiological states in response to environmental signals. 相似文献
3.
4.
Rolland F Wanke V Cauwenberg L Ma P Boles E Vanoni M de Winde JH Thevelein JM Winderickx J 《FEMS yeast research》2001,1(1):33-45
Glucose-induced cAMP signalling in Saccharomyces cerevisiae requires extracellular glucose detection via the Gpr1-Gpa2 G-protein coupled receptor system and intracellular glucose-sensing that depends on glucose uptake and phosphorylation. The glucose uptake requirement can be fulfilled by any glucose carrier including the Gal2 permease or by intracellular hydrolysis of maltose. Hence, the glucose carriers do not seem to play a regulatory role in cAMP signalling. Also the glucose carrier homologues, Snf3 and Rgt2, are not required for glucose-induced cAMP synthesis. Although no further metabolism beyond glucose phosphorylation is required, neither Glu6P nor ATP appears to act as metabolic trigger for cAMP signalling. This indicates that a regulatory function may be associated with the hexose kinases. Consistently, intracellular acidification, another known trigger of cAMP synthesis, can bypass the glucose uptake requirement but not the absence of a functional hexose kinase. This may indicate that intracellular acidification can boost a downstream effect that amplifies the residual signal transmitted via the hexose kinases when glucose uptake is too low. 相似文献
5.
6.
Lee H Khanal Lamichhane A Garraffo HM Kwon-Chung KJ Chang YC 《Molecular microbiology》2012,84(1):130-146
This study shows the importance of PDK1, TOR and PKC signalling pathways to the basal tolerance of Cryptococcus neoformans towards fluconazole, the widely used drug for treatment of cryptococcosis. Mutations in genes integral to these pathway resulted in hypersensitivity to the drug. Upon fluconazole treatment, Mpk1, the downstream target of PKC was phosphorylated and its phosphorylation required Pdk1. We show genetically that the PDK1 and TOR phosphorylation sites in Ypk1 as well as the kinase activity of Ypk1 are required for the fluconazole basal tolerance. The involvement of these pathways in fluconazole basal tolerance was associated with sphingolipid homeostasis. Deletion of PDK1, SIN1 or YPK1 but not MPK1 affected cell viability in the presence of sphingolipid biosynthesis inhibitors. Concurrently, pdk1Δ, sin1Δ, ypk1Δ and mpk1Δ exhibited altered sphingolipid content and elevated fluconazole accumulation compared with the wild type. The fluconazole hypersensitivity phenotype of these mutants, therefore, appears to be the result of malfunction of the influx/efflux systems due to modifications of membrane sphingolipid content. Interestingly, the reduced virulence of these strains in mice suggests that the cryptococcal PDK1, PKC, and likely the TOR pathways play an important role in managing stress exerted either by fluconazole or by the host environment. 相似文献
7.
The CDC25 gene product is a guanine nucleotide exchange factor for Ras proteins in yeast. Recently it has been suggested that the intracellular levels of guanine nucleotides may influence the exchange reaction. To test this hypothesis we measured the levels of nucleotides in yeast cells under different growth conditions and the relative amount of Ras2-GTP. The intracellular GTP/GDP ratio was found to be very sensitive to growth conditions: the ratio is high, close to that of ATP/ADP during exponential growth, but it decreases rapidly before the beginning of stationary phase, and it drops further under starvation conditions. The addition of glucose to glucose-starved cells causes a fast increase of the GTP/GDP ratio. The relative amount of Ras2-GTP changes in a parallel way suggesting that there is a correlation with the cytosolic GTP/GDP ratio. In addition 'in vitro' mixed-nucleotide exchange experiments done on purified Ras2 protein demonstrated that the GTP and GDP concentrations influence the extent of Ras2-GTP loading giving further support to their possible regulatory role. 相似文献
8.
Sugajska E Swiatek W Zabrocki P Geyskens I Thevelein JM Zolnierowicz S Wera S 《Molecular microbiology》2001,40(4):1020-1026
The trehalose-degrading enzyme trehalase is activated upon addition of glucose to derepressed cells or in response to nitrogen source addition to nitrogen-starved glucose-repressed yeast (Saccharomyces cerevisiae) cells. Trehalase activation is mediated by phosphorylation. Inactivation involves dephosphorylation, as trehalase protein levels do not change upon multiple activation/inactivation cycles. Purified trehalase can be inactivated by incubation with protein phosphatase 2A (PP2A) in vitro. To test whether PP2A was involved in trehalase inactivation in vivo, we overexpressed the yeast PP2A isoform Pph22. Unexpectedly, the moderate (approximately threefold) overexpression of Pph22 that we obtained increased basal trehalase activity and rendered this activity unresponsive to the addition of glucose or a nitrogen source. Concomitant with higher basal trehalase activity, cells overexpressing Pph22 did not store trehalose efficiently and were heat sensitive. After the addition of glucose or of a nitrogen source to starved cells, Pph22-overexpressing cells showed a delayed exit from stationary phase, a delayed induction of ribosomal gene expression and constitutive repression of stress-regulated element-controlled genes. Deletion of the SCH9 gene encoding a protein kinase involved in nutrient-induced signal transduction restored glucose-induced trehalase activation in Pph22-overexpressing cells. Taken together, our results indicate that yeast PP2A overexpression leads to the activation of nutrient-induced signal transduction pathways in the absence of nutrients. 相似文献
9.
《Molecular & general genetics : MGG》1998,260(2-3):193-198
In the phytopathogenic basidiomycete Ustilago maydis mating and dikaryon formation are controlled by a pheromone/receptor system and the multiallelic b locus. Recently, a gene encoding a G protein α subunit, gpa3, was isolated and has subsequently been implicated in pheromone signal transduction. Mutants deleted for gpa3 are sterile and nonpathogenic, and exhibit a morphology that is similar to that of mutants with defects in the adenylate
cyclase gene uac1. We have found that the sterility and mutant morphology of gpa3 deletion strains can be rescued by exogenous cAMP. In these mutants and in the corresponding wild-type strains, exogenous
cAMP stimulates pheromone gene expression to a level comparable to that seen in the pheromone-stimulated state. In addition,
we demonstrate that uac1 is epistatic to gpa3. We conclude that Gpa3 controls the cAMP signalling pathway in U.maydis and discuss how this pathway feeds into the pheromone response.
Received: 4 May 1998 / Accepted: 24 July 1998 相似文献
10.
11.
Cazzaniga P Pescini D Besozzi D Mauri G Colombo S Martegani E 《Journal of biotechnology》2008,133(3):377-385
In the yeast Saccharomyces cerevisiae, the Ras/cAMP/PKA pathway is involved in the regulation of metabolism and cell cycle progression. The pathway is tightly regulated by several control mechanisms, as the feedback cycle ruled by the activity of phosphodiesterase. Here, we present a discrete mathematical model for the Ras/cAMP/PKA pathway that considers its principal cytoplasmic components and their mutual interactions. The tau-leaping algorithm is then used to perform stochastic simulations of the model. We investigate this system under various conditions, and we test how different values of several stochastic reaction constants affect the pathway behaviour. Finally, we show that the level of guanine nucleotides, GTP and GDP, could be relevant metabolic signals for the regulation of the whole pathway. 相似文献
12.
J. Krüger G. Loubradou E. Regenfelder A. Hartmann R. Kahmann 《Molecular genetics and genomics : MGG》1998,260(2-3):193-198
In the phytopathogenic basidiomycete Ustilago maydis mating and dikaryon formation are controlled by a pheromone/receptor system and the multiallelic b locus. Recently, a gene encoding a G protein α subunit, gpa3, was isolated and has subsequently been implicated in pheromone signal transduction. Mutants deleted for gpa3 are sterile and nonpathogenic, and exhibit a morphology that is similar to that of mutants with defects in the adenylate cyclase gene uac1. We have found that the sterility and mutant morphology of gpa3 deletion strains can be rescued by exogenous cAMP. In these mutants and in the corresponding wild-type strains, exogenous cAMP stimulates pheromone gene expression to a level comparable to that seen in the pheromone-stimulated state. In addition, we demonstrate that uac1 is epistatic to gpa3. We conclude that Gpa3 controls the cAMP signalling pathway in U.maydis and discuss how this pathway feeds into the pheromone response. 相似文献
13.
Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae 总被引:3,自引:0,他引:3
The yeast Saccharomyces cerevisiae can synthesize trehalose and also use this disaccharide as a carbon source for growth. However, the molecular mechanism by which extracellular trehalose can be transported to the vacuole and degraded by the acid trehalase Ath1p is not clear. By using an adaptation of the assay of invertase on whole cells with NaF, we showed that more than 90% of the activity of Ath1p is extracellular, splitting of the disaccharide into glucose. We also found that Agt1p-mediated trehalose transport and the hydrolysis of the disaccharide by the cytosolic neutral trehalase Nth1p are coupled and represent a second, independent pathway, although there are several constraints on this alternative route. First, the AGT1/MAL11 gene is controlled by the MAL system, and Agt1p was active in neither non-maltose-fermenting nor maltose-inducible strains. Second, Agt1p rapidly lost activity during growth on trehalose, by a mechanism similar to the sugar-induced inactivation of the maltose permease. Finally, both pathways are highly pH sensitive and effective growth on trehalose occurred only when the medium was buffered at around pH 5.0. The catabolism of trehalose was purely oxidative, and since levels of Ath1p limit the glucose flux in the cells, batch cultures on trehalose may provide a useful alternative to glucose-limited chemostat cultures for investigation of metabolic responses in yeast. 相似文献
14.
15.
16.
17.
18.
Seven haploid strains (four with the MAT alpha mating type and three with the MATa mating type) were selected from the Peterhof genetic collection of yeast. Previous phenotypic analysis assigned six of these strains to a physiological group of strains with a lower activity of the Ras/cAMP signal transduction pathway. The haploids were crossed, and the resulting 12 diploids showed higher glycogen accumulation, tolerance to heat shock and nitrogen starvation, and sporulation in complete media. Ten of the diploids expressed the hypersporulation phenotype (higher sporulation efficiency). The phenotypic characters of these ten diploids suggested a reduced activity of the Ras/cAMP pathway. All 12 diploids were tested for sporulation and production of two groups of asci (those with one or two spores and those with three or four spores) as dependent on culture conditions (21, 30, or 34 degrees C; standard sporulation medium or a complete medium containing potassium acetate or glycerol in place of glucose). Sporulation proved to depend on temperature and medium composition. The results are collated with the data on yeast phenotypes associated with a lower activity of the Ras/cAMP signal transduction pathway. 相似文献
19.
The chlorinated ethylenes 1,1-dichloroethylene (vinylidene chloride), trans-1,2-dichloroethylene, trichloroethylene, and tetrachloroethylene (perchloroethylene) were assayed for their ability to induce mitotic gene conversion and point mutation as well as mitotic aneuploidy in diploid strains of the yeast Saccharomyces cerevisiae. From strain D7 late logarithmic-phase cells grown in 20% glucose liquid medium, containing a high level of cytochrome P-450, as well as stationary-phase cells combined with an exogenous metabolic activating system (S9) were used, in order to activate the chlorinated compounds and to produce electrophilic mutagenic intermediates. Only 1,1-dichloroethylene exhibited a dose-dependent genetic activity, while the other ethylenes did not. The 2 ways of metabolic activation were compared and were found to cause approximately the same effect. In contrast to the findings with strain D7, vinylidene chloride, trans-1,2-dichloroethylene, and trichloroethylene induced, without metabolic activation, mitotic chromosomal malsegregation in strain D61.M. The presence of liver homogenate as an activating system did not enhance the respective frequencies of chromosome loss. In the case of tetrachloroethylene, sufficient data have not become available, since this compound showed a highly toxic effect towards yeast cells, decreasing the rate of surviving cells to less than 30% at a concentration of 9.8 mM. 相似文献
20.
In Saccharomyces cerevisiae pseudohyphae formation may be triggered by nitrogen deprivation and is stimulated by cAMP. It was observed that even in a medium with an adequate nitrogen supply, cAMP can induce pseudohyphal growth when S. cerevisiae uses ethanol as carbon source. This led us to investigate the effects of the carbon source and of a variety of stresses on yeast morphology. Pseudohyphae formation and invasive growth were observed in a rich medium (YP) with poor carbon sources such as lactate or ethanol. External cAMP was required for the morphogenetic transition in one genetic background, but was dispensable in strain 1278b which has been shown to have an overactive Ras2/cAMP pathway. Pseudohyphal growth and invasiveness also took place in YPD plates when the yeast was subjected to different stresses: a mild heat-stress (37 °C), an osmotic stress (1 m NACl), or addition of compounds which affect the lipid bilayer organization of the cell membrane (aliphatic alcohols at 2%) or alter the glucan structure of the cell wall (Congo red). We conclude that pseudohyphal growth is a physiological response not only to starvation but also to a stressful environment; it appears to require the coordinate action of a MAP kinase cascade and a cAMP-dependent pathway. 相似文献