首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

2.
Sinorhizobium meliloti natural populations show a high level of genetic polymorphism possibly due to the presence of mobile genetic elements such as insertion sequences (IS), transposons, and bacterial mobile introns. The analysis of the DNA sequence polymorphism of the nod region of S. meliloti pSymA megaplasmid in an Italian isolate led to the discovery of a new insertion sequence, ISRm31. ISRm31 is 2,803 bp long and has 22-bp-long terminal inverted repeat sequences, 8-bp direct repeat sequences generated by transposition, and three ORFs (A, B, C) coding for proteins of 124, 115, and 541 amino acids, respectively. ORF A and ORF C are significantly similar to members of the transposase family. Amino acid and nucleotide sequences indicate that ISRm31 is a member of the IS66 family. ISRm31 sequences were found in 30.5% of the Italian strains analyzed, and were also present in several collection strains of the Rhizobiaceae family, including S. meliloti strain 1021. Alignment of targets sites in the genome of strains carrying ISRm31 suggested that ISRm31 inserts randomly into S. meliloti genomes. Moreover, analysis of ISRm31 insertion sites revealed DNA sequences not present in the recently sequenced S. meliloti strain 1021 genome. In fact, ISRm31 was in some cases linked to DNA fragments homologous to sequences found in other rhizobia species.  相似文献   

3.
4.
P transposons belong to the eukaryotic DNA transposons, which are transposed by a cut and paste mechanism using a P-element-coded transposase. They have been detected in Drosophila, and reside as single copies and stable homologous sequences in many vertebrate species. We present the P elements Pcin1, Pcin2 and Pcin3 from Ciona intestinalis, a species of the most primitive chordates, and compare them with those from Ciona savignyi. They showed typical DNA transposon structures, namely terminal inverted repeats and target site duplications. The coding region of Pcin1 consisted of 13 small exons that could be translated into a P-transposon-homologous protein. C. intestinalis and C. savignyi displayed nearly the same phenotype. However, their P elements were highly divergent and the assumed P transposase from C. intestinalis was more closely related to the transposase from Drosophila melanogaster than to the transposase of C. savignyi. The present study showed that P elements with typical features of transposable DNA elements may be found already at the base of the chordate lineage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
Eukaryotic chromosomal DNA replication is initiated by a highly conserved set of proteins that interact with cis-acting elements on chromosomes called replicators. Despite the conservation of replication initiation proteins, replicator sequences show little similarity from species to species in the small number of organisms that have been examined. Examination of replicators in other species is likely to reveal common features of replicators. We have examined a Kluyeromyces lactis replicator, KARS12, that functions as origin of DNA replication on plasmids and in the chromosome. It contains a 50-bp region with similarity to two other K. lactis replicators, KARS101 and the pKD1 replication origin. Replacement of the 50-bp sequence with an EcoRI site completely abrogated the ability of KARS12 to support plasmid and chromosomal DNA replication origin activity, demonstrating this sequence is a common feature of K. lactis replicators and is essential for function, possibly as the initiator protein binding site. Additional sequences up to 1 kb in length are required for efficient KARS12 function. Within these sequences are a binding site for a global regulator, Abf1p, and a region of bent DNA, both of which contribute to the activity of KARS12. These elements may facilitate protein binding, protein/protein interaction and/or nucleosome positioning as has been proposed for other eukaryotic origins of DNA replication.  相似文献   

7.
The maT family is a unique clade within the Tc1-mariner superfamily, and their distribution is to date known as being limited to invertebrates. A novel transposon named EamaT1 is described from the genome of the earthworm Eisenia andrei. The full sized EamaT1 was obtained by degenerate and inverse PCR-based amplification. Sequence analysis of multiple copies of the EamaT1, which consisted of 0.9 and 1.4 kb elements, showed that the consensual EamaT1 with inverted terminal repeats (ITRs) of 69 bp was 1,422 bp long and flanked by a duplicated TA dinucleotide. The EamaT1 is present in approximately 120–250 copies per diploid genome but undergoes an inactivation process as a result of accumulating multiple mutations and is nonfunctional. The open reading frame (ORF) of the EamaT1 consensus encoding 356 amino acid sequences of transposase contained a DD37D signature and a conserved paired-like DNA binding motif for the transposition mechanism. The result of ITRs comparison confirmed their consensus terminal sequences (5′-CAGGGTG-3′) and AT-rich region on the internal bases for ITRs-transposase interaction.  相似文献   

8.
We describe patterns of DNA variation among the three centromeric satellite families in Arabidopsis halleri and lyrata. The newly studied subspecies (A. halleri ssp. halleri and A. lyrata ssp. lyrata and petraea), like the previously studied A. halleri ssp. gemmifera and A. lyrata ssp. kawasakiana, have three different centromeric satellite families, the older pAa family (also present in A. arenosa) and two families, pAge1 and pAge2, that probably evolved more recently. Sequence variability is high in all three satellite families, and the pAa sequences do not cluster by their species of origin. Diversity in the pAge2 family is complex, and different from variation among copies of the other two families, showing clear evidence for exchange events among family members, especially in A. halleri ssp. halleri. In A. lyrata ssp. lyrata there is some evidence for recent rapid spread of pAge2 variants, suggesting selection favoring these sequences. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Brian Morton]  相似文献   

9.
Ruan L  He W  He J  Sun M  Yu Z 《Antonie van Leeuwenhoek》2005,87(4):283-288
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain.  相似文献   

10.
We have cloned and sequenced a 321bp band of repetitive DNA from Eptesicus fuscus and E. serotinus observed after gel electrophoresis of EcoRI digested genomic DNA in both species. Southern blot analysis of genomic DNA (from both species) digested with the same enzyme showed the existence of a ladder pattern indicating that the repetitive DNA is arrayed in tandem. The repetitive sequences have a monomer unit of 321bp which is composed of two subunits of 160bp, suggested by the existence of a 160bp band in the ladder of E. fuscus and by the presence of some direct repeats found in the analysis of the consensus sequence. Analysis of the methylation status demonstrated that cytosines in CCGG sequences in this satellite DNA are methylated in E. fuscus but not in the E. serotinus. Alignment of the sequenced clones showed that several nucleotide positions are diagnostic species-specific and consequently the phylogenetic analysis grouped the monomer units from both species in two clearly separated groups.  相似文献   

11.
A novel family of miniature transposable elements, named Zaba, was identified in pea (Pisum sativum) and subsequently also in other legume species using computer analysis of their DNA sequences. Zaba elements are 141–190 bp long, generate 10-bp target site duplications, and their terminal inverted repeats make up most of the sequence. Zaba elements thus resemble class 3 foldback transposons. The elements are only moderately repetitive in pea (tens to hundreds copies per haploid genome), but they are present in up to thousands of copies in the genomes of several Medicago and Vicia species. More detailed analysis of the elements from pea, including isolation of new sequences from a genomic library, revealed that a fraction of these elements are truncated, and that their last transposition probably did not occur recently. A search for Zaba sequences in EST databases showed that at least some elements are transcribed, most probably due to their association with genic regions.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Communicated by M.-A. Grandbastien  相似文献   

12.
We identified a 178 bp mobile DNA element in lettuce with characteristic CGAGC/GCTCG repeats in the subterminal regions. This element has terminal inverted repeats and 8-bp target site duplications typical of the hAT superfamily of class II mobile elements, but its small size and potential to form a single-stranded stable hairpin-like secondary structure suggest that it is related to MITE elements. In silico searches for related elements identified 252 plant sequences with 8-bp target site duplications and sequence similarity in their terminal and subterminal regions. Some of these sequences were predicted to encode transposases and may be autonomous elements; these constituted a separate clade within the phylogram of hAT transposases. We demonstrate that the CGAGC/GCTCG pentamer maximizes the hairpin stability compared to any other pentamer with the same C + G content, and the secondary structures of these elements are more stable than for most MITEs. We named these elements collectively as hATpin elements because of the hAT similarity and their hairpin structures. The nearly complete rice genome sequence and the highly advanced genome annotation allowed us to localize most rice elements and to deduce insertion preferences. hATpin elements are distributed on all chromosomes, but with significant bias for chromosomes 1 and 10 and in regions of moderate gene density. This family of class II mobile elements is found primarily in monocot species, but is also present in dicot species. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

13.
The major satellite DNAs of the dioecious plant Silene latifolia are represented by the repetitive sequences X43.1, RMY1 and members of the SacI family, which are located at the distal ends of chromosomes. To characterize the satellite DNAs at the distal ends of the chromosomes in S. latifolia (Sl-distal-satDNA), we isolated a bacterial artificial chromosome clone (number 15B12) that contained multiple repeat sequences with KpnI restriction sites, and subcloned a portion of this sequence into a plasmid vector. Sequencing analysis confirmed that recognition or degenerate sites for KpnI were repeated 26 times at intervals of 310–324 bp in the inserted DNA. The phylogenetic tree that was constructed with the 26 KpnI repeat units contained clustered branches that were independent of the SacI family. It is clear that the KpnI repeat belongs to an Sl-distal-satDNA family that is distinct from the SacI family. We designated this family as "KpnI" after the restriction enzyme that does not have a site in the SacI family. Multi-colored fluorescent in situ hybridization was performed with the KpnI family and RMY1 probes under high stringency conditions. The results suggest that chromosome 7 is unique and that it carries the KpnI family at only one end.  相似文献   

14.
Abstract While genome sequencing projects have discovered numerous types of transposable elements in diverse eukaryotes, there are many taxa of ecological and evolutionary significance that have received little attention, such as the molluscan class Bivalvia. Examination of a 0.7-MB genomic sequence database from the cupped oyster Crassostrea virginica revealed the presence of a common interspersed element, CvA. CvA possesses subterminal inverted repeats, a tandemly repeated core element, a tetranucleotide microsatellite region, and the ability to form stable secondary structures. Three other less abundant repetitive elements with a similar structure but little sequence similarity were also found in C. virginica. Ana-1, a repetitive element with similar features, was discovered in the blood ark Anadara trapezia by probing a genomic library with a dimeric repeat element contained in intron 2 of a minor globin gene in that species. All of these elements are flanked by the dinucleotide AA, a putative target-site duplication. They exhibit structural similarity to the sea urchin Tsp family and Drosophila SGM insertion sequences; in addition, they possess regions of sequence similarity to satellite DNA from several bivalve species. We suggest that the Crassostrea repetitive elements and Ana-1 are members of a new MITE-like family of nonautonomous transposable elements, named pearl. Pearl is the first putative nonautonomous DNA transposon to be identified in the phylum Mollusca.  相似文献   

15.
Major satellites of species in the genus Pimelia comprise large portions of their genomes and belong to seven major satellite families which all originate from a common ancestral sequence. Here we present the results of comprehensive screening of 26 Pimelia species belonging to three distinct geographic groups (Ibero-Balearic, African and Canary Islands) for the presence of different Pimelia satellite families in their genomes. Dot-blot hybridization experiments suggest that together with one dominant, highly abundant satellite family, other families are also present in genomes of the majority of examined Pimelia species, but as low-copy number repeats. The estimated abundance of these underrepresented repeats is about 4,000 copies per haploid genome. Signals of highly abundant satellite family from P. scabrosa (PSCA) in examined congeneric species, obtained after PCR amplification and Southern hybridization under high stringency conditions, corroborate sequence preservation of low-copy representatives of satellite families. PRINS localized low-copy repeats within the pericentromeric regions of all chromosomes. These results point to the existence of an extensive library of repetitive DNAs that was already present in the genome of the common ancestor of extant Pimelia taxa, and shifts the period of diversification of Pimelia satellites far in the history of this genus.  相似文献   

16.
17.
The nucleotide sequences of ten SP11 and nine SRK alleles in Raphanus sativus were determined, and deduced amino acid sequences were compared with those of Brassica SP11 and SRK. The amino acid sequence identity of class-I SP11s in R. sativus was about 30% on average, the highest being 52.2%, while that of the S domain of class-I SRK was 77.0% on average and ranged from 70.8% to 83.9%. These values were comparable to those of SP11 and SRK in Brassica oleracea and B. rapa. SP11 of R. sativus S-21 was found to be highly similar to SP11 of B. rapa S-9 (89.5% amino acid identity), and SRK of R. sativus S-21 was similar to SRK of B. rapa S-9 (91.0%). SP11 and SRK of R. sativus S-19 were also similar to SP11 and SRK of B. oleracea S-20, respectively. These similarities of both SP11 and SRK alleles between R. sativus and Brassica suggest that these S haplotype pairs originated from the same ancestral S haplotypes.  相似文献   

18.
Centromeric repetitive sequences were isolated from Arabidopsis halleri ssp. gemmifera and A. lyrata ssp. kawasakiana. Two novel repeat families isolated from A. gemmifera were designated pAge1 and pAge2. These repeats are 180 bp in length and are organized in a head-to-tail manner. They are similar to the pAL1 repeats of A. thaliana and the pAa units of A. arenosa. Both A. gemmifera and A. kawasakiana possess the pAa, pAge1 and pAge2 repeat families. Sequence comparisons of different centromeric repeats revealed that these families share a highly conserved region of approximately 50 bp. Within each of the four repeat families, two or three regions showed low levels of sequence variation. The average difference in nucleotide sequence was approximately 10% within families and 30% between families, which resulted in clear distinctions between families upon phylogenetic analysis. FISH analysis revealed that the localization patterns for the pAa, pAge1 and pAge2 families were chromosome specific in A. gemmifera and A. kawasakiana. In one pair of chromosomes in A. gemmifera, and three pairs of chromosomes in A. kawasakiana, two repeat families were present. The presence of three families of centromeric repeats in A. gemmifera and A. kawasakiana indicates that the first step toward homogenization of centromeric repeats occurred at the chromosome level.Communicated by W. R. McCombie  相似文献   

19.
A new cryptic plasmid pBMB175 from Bacillus thuringiensis subsp. tenebrionis YBT-1765 was isolated and characterized. Sequence analysis showed that pBMB175 (14,841 bp and 31% GC content) contained at least eighteen putative open reading frames (ORFs), among which nine ORFs displayed the homology with the hypothetical proteins in rolling-circle replication plasmid pGI3. Deletion analysis revealed that the pBMB175 minireplicon located in a novel 1,151 bp fragment. This fragment contains ORF7 coding sequence, which encodes a protein (Rep175, 149 amino acids [aa]) indispensable for plasmid replication. Rep175 has no significant homology with known function proteins. Furthermore, a putative double-strand origin (dso), having no DNA similarity with characterized dso of other replicon so far, was identified in this minireplicon fragment. These features showed that pBMB175 could be placed into a new plasmid family.  相似文献   

20.
Achromobacter xylosoxidans is known to utilize d-glucose via the modified Entner-Doudoroff pathway. Although d-gluconate dehydratase produced from this bacterium was purified and partially characterized previously, a gene that encodes this enzyme has not yet been identified. To obtain protein information on bacterial d-gluconate dehydratase, we partially purified d-gluconate dehydratase in A. xylosoxidans and investigated its biochemical properties. Two degenerate primers were designed based on the N-terminal amino acid sequence of the partially purified d-gluconate dehydratase. Through PCR performed using degenerate primers, a 1,782-bp DNA sequence encoding the A. xylosoxidans d-gluconate dehydratase (gnaD) was obtained. The deduced amino acid sequence of A. xylosoxidans gnaD showed strong similarity with that of proteins belonging to the dihydroxy-acid dehydratase/phosphogluconate dehydratase family (COG0129). This is in contrast to the archaeal d-gluconate dehydratase, which belongs to the enolase superfamily (COG4948). The phylogenetic tree showed that A. xylosoxidans d-gluconate dehydratase is closer to the 6-phosphogluconate dehydratase than the dihydroxy-acid dehydratase. Interestingly, a clade containing A. xylosoxidans enzyme was clustered with proteins annotated as a second and a third dihydroxy-acid dehydratase in the genomes of Clostridium acetobutylicum (Cac_ilvD2) and Streptomyces ceolicolor (Sco_ilvD2, Sco_ilvD3), indicating that the function of these enzymes is the dehydration of d-gluconate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号