首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Rhizobium leguminosarum bv. viciae -secreted Nod factors are able to induce root hair deformation, the formation of nodule primordia and the expression of early nodulin genes in Vicia sativa (vetch). To obtain more insight into the mode of action of Nod factors the expression of early nodulin genes was followed during Nod factor-induced root hair deformation and nodule primordium formation. The results of these studies suggested that the expression of VsENOD5 and VsENOD12 is not required for root hair deformation. In the Nod factor-induced primordia both VsENOD12 and VsENOD40 are expressed in a spatially controlled manner similar to that found in Rhizobium -induced nodule primordia. In contrast, VsENOD5 expression has never been observed in Nod factor-induced primordia, showing that the induction of VsENOD5 and VsENOD12 expression are not coupled. VsENOD5 expression is induced in the root epidermis by Nod factors and in Rhizobium -induced nodule primordia only in cells infected by the bacteria, suggesting that the Nod factor does not reach the inner cortical cells.  相似文献   

2.
3.
4.
Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting a number of key developmental responses in the roots of legume hosts. One of the earliest responses of root hairs to Nod factors is the induction of sharp oscillations of cytoplasmic calcium ion concentration ("calcium spiking"). This response was first characterised in Medicago sativa and Nod factors were found to be unable to induce calcium spiking in a nodulation-defective mutant of M. sativa. The fact that this mutant lacked any morphological response to Nod factors raised the question of whether calcium spiking could be part of a Nod factor-induced signal transduction pathway leading to nodulation. More recently, calcium spiking has been described in a model legume, Medicago truncatula, and in pea. When nodulation-defective mutants were tested for the induction of calcium spiking in response to Nod factors, three loci of pea and two of M. truncatula were found to be necessary for Nod factor-induced calcium spiking. These loci are also known to be necessary for Nod factor-induction of symbiotic responses such as root hair deformation, nodulin gene expression and cortical cell division. These results therefore constitute strong genetic evidence for the role of calcium spiking in Nod factor transduction. This system provides an opportunity to use genetics to study ligand-stimulated calcium spiking as a signal transduction event.  相似文献   

5.
Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting several key developmental responses in the roots of legume hosts. Using nodulation-defective mutants of Medicago truncatula, we have started to dissect the genetic control of Nod factor transduction. Mutants in four genes (DMI1, DMI2, DMI3, and NSP) were pleiotropically affected in Nod factor responses, indicating that these genes are required for a Nod factor-activated signal transduction pathway that leads to symbiotic responses such as root hair deformations, expressions of nodulin genes, and cortical cell divisions. Mutant analysis also provides evidence that Nod factors have a dual effect on the growth of root hair: inhibition of endogenous (plant) tip growth, and elicitation of a novel tip growth dependent on (bacterial) Nod factors. dmi1, dmi2, and dmi3 mutants are also unable to establish a symbiotic association with endomycorrhizal fungi, indicating that there are at least three common steps to nodulation and endomycorrhization in M. truncatula and providing further evidence for a common signaling pathway between nodulation and mycorrhization.  相似文献   

6.
根瘤菌是一类引起豆科植物结瘤固氮的土壤细菌。根瘤中的类菌体固定空气中的氮气为宿主植物提供充足的氮源。共生体系的建立始于细菌与宿主植物间复杂的信号交换过程。植物产生类黄酮诱导相应的根瘤菌合成分泌结瘤因子 ,后者进而诱导宿主植物根系形态变化以及早期根瘤素基因表达。以下将就宿主植物结瘤因子的特异识别和早期信号传导进行讨论。  相似文献   

7.
8.
Establishment of the Rhizobium-legume symbiosis depends on a molecular dialogue, in which rhizobial nodulation (Nod) factors act as symbiotic signals, playing a key role in the control of specificity of infection and nodule formation. Using nodulation-defective (Nod-) mutants of Medicago truncatula to study the mechanisms controlling Nod factor perception and signalling, we have previously identified five genes that control components of a Nod factor-activated signal transduction pathway. Characterisation of a new M. truncatula Nod- mutant led to the identification of the Nod Factor Perception (NFP) locus. The nfp mutant has a novel phenotype among Nod- mutants of M. truncatula, as it does not respond to Nod factors by any of the responses tested. The nfp mutant thus shows no rapid calcium flux, the earliest detectable Nod factor response of wild-type plants, and no root hair deformation. The nfp mutant is also deficient in Nod factor-induced calcium spiking and early nodulin gene expression. While certain genes controlling Nod factor signal transduction also control the establishment of an arbuscular mycorrhizal symbiosis, the nfp mutant shows a wild-type mycorrhizal phenotype. These data indicate that the NFP locus controls an early step of Nod factor signal transduction, upstream of previously identified genes and specific to nodulation.  相似文献   

9.
10.
11.
12.
This paper shows that lipo-oligosaccharides (Nod factors) synthesized by Rhizobium bacteria elicit the induction of infection-related early nodulin genes ( PsENOD5 and PsENOD12 ) in pea root hairs. R. leguminosarum bv. viciae secretes a mixture of Nod factors containing a C18 fatty acid chain with 4 (C18:4) or 1 double bond (C18:1). Purified Nod factors harbouring either a C18:4 or a C18:1 acyl moiety induce the expression of the pea early nodulin genes, PsENOD5 and PsENOD12 , but the kinetics of induction are different. The expression of both early nodulin genes is induced in a transient manner by the purified Nod factors while a mixture of the Nod factors extends the period during which these genes are expressed. In spite of the host-specific nature of the infection process, heterologous Nod factors of R. meliloti also induce the expression of PsENOD5 and PsENOD12 genes, though with a marked delay compared with the homologous compounds.  相似文献   

13.
Legumes form two different types of intracellular root symbioses, with fungi and bacteria, resulting in arbuscular mycorrhiza and nitrogen-fixing nodules, respectively. Rhizobial signalling molecules, called Nod factors, play a key role in establishing the rhizobium-legume association and genes have been identified in Medicago truncatula that control a Nod factor signalling pathway leading to nodulation. Three of these genes, the so-called DMI1, DMI2 and DMI3 genes, are also required for formation of mycorrhiza, indicating that the symbiotic pathways activated by both the bacterial and the fungal symbionts share common steps. To analyse possible cross-talk between these pathways we have studied the effect of treatment with Nod factors on mycorrhization in M. truncatula. We show that Nod factors increase mycorrhizal colonization and stimulate lateral root formation. The stimulation of lateral root formation by Nod factors requires both the same structural features of Nod factors and the same plant genes (NFP, DMI1, DMI2, DMI3 and NSP1) that are required for other Nod factor-induced symbiotic responses such as early nodulin gene induction and cortical cell division. A diffusible factor from arbuscular mycorrhizal fungi was also found to stimulate lateral root formation, while three root pathogens did not have the same effect. Lateral root formation induced by fungal signal(s) was found to require the DMI1 and DMI2 genes, but not DMI3. The idea that this diffusible fungal factor might correspond to a previously hypothesized mycorrhizal signal, the 'Myc factor', is discussed.  相似文献   

14.
A mutation in the ilvC gene of Sinorhizobium meliloti 1021 determines a symbiotically defective phenotype. ilvC mutants obtained from different S. meliloti wild-type strains are able to induce root hair deformation on alfalfa roots and show variable activation of the common nodulation genes nodABC. All of these mutants are noninfective. The presence of extra copies of nodD3-syrM in an IlvC- background does not promote nod expression but allows the detection of low levels of Nod factor production. The sulphation of the Nod factor metabolites, however, is not affected. Furthermore, IlvC- strains induce a specific pattern of starch accumulation on alfalfa roots as well as of early nodulin expression. Hence, the pleiotropic action of the ilvC gene in S. meliloti may reveal novel complexities involved in the symbiotic interaction.  相似文献   

15.
16.
Rhizobium nodulation (Nod) factors are specific lipochito-oligosaccharide signals essential for initiating in root hairs of the host legume developmental responses that are required for controlled entry of the microsymbiont. In this article, we focus on the Nod factor signal transduction pathway leading to specific and cell autonomous gene activation in Medicago truncatula cv Jemalong in a study making use of the Nod factor-inducible MtENOD11 gene. First, we show that pharmacological antagonists that interfere with intracellular ion channel and Ca2+ pump activities are efficient blockers of Nod factor-elicited pMtENOD11-beta-glucuronidase (GUS) expression in root hairs of transgenic M. truncatula. These results indicate that intracellular Ca2+ release and recycling activities, essential for Ca2+ spiking, are also required for specific gene activation. Second, pharmacological effectors that inhibit phospholipase D and phosphoinositide-dependent phospholipase C activities are also able to block pMtENOD11-GUS activation, thus underlining a central role for multiple phospholipid signaling pathways in Nod factor signal transduction. Finally, pMtENOD11-GUS was introduced into all three Nod-/Myc- dmi M. truncatula mutant backgrounds, and gene expression was evaluated in response to the mastoparan peptide agonist Mas7. We found that Mas7 elicits root hair MtENOD11 expression in dmi1 and dmi2 mutants, but not in the dmi3 mutant, suggesting that the agonist acts downstream of DMI1/DMI2 and upstream of DMI3. In light of these results and the recently discovered identities of the DMI gene products, we propose an integrated cellular model for Nod factor signaling in legume root hairs in which phospholipids play a key role in linking the Nod factor perception apparatus to downstream components such as Ca2+ spiking and ENOD gene expression.  相似文献   

17.
Oldroyd GE  Long SR 《Plant physiology》2003,131(3):1027-1032
Bacterially derived Nod factor is critical in the establishment of the legume/rhizobia symbiosis. Understanding the mechanisms of Nod factor perception and signal transduction in the plant will greatly advance our understanding of this complex interaction. Here, we describe the identification of a new locus, nodulation-signaling pathway 2 (NSP2), of Medicago truncatula that is involved in Nod factor signaling. Mutants at this locus are blocked for Nod factor-induced gene expression and show a reduced root hair deformation response. nsp2 plants also show a complete absence of infection and cortical cell division following Sinorhizobium meliloti inoculation. Nod factor-induced calcium spiking, one of the earliest responses tested, is still functional in these mutant plants. We conclude that the gene NSP2 is a component of the Nod factor signal transduction pathway that lies downstream of the calcium-spiking response.  相似文献   

18.
19.
The gln-gamma gene, encoding the gamma subunit of glutamine synthetase in French bean (Phaseolus vulgaris), is strongly induced during nodule development. We have determined the nucleotide sequence of a 1.3-kilobase region at its 5' end and have identified several sequences common to the promoter regions of late nodulin genes from other legume species. The 5'-flanking region was analyzed for sequence-specific interactions with nuclear factors from French bean. A factor from nodules (PNF-1) was identified that binds to multiple sites between -860 and -154, and a related but distinct factor (PRF-1) was detected in extracts from uninfected roots. PNF-1 and PRF-1 bound strongly to a synthetic oligonucleotide containing the sequence of an A/T-rich 21-base pair imperfect repeat found at positions -516 and -466. The same factors also had a high affinity for a protein binding site from a soybean leghemoglobin gene and appeared to be closely related to the soybean nodule factor NAT2, which binds to A/T-rich sequences in the lbc3 and nodulin 23 genes [Jacobsen et al. (1990). Plant Cell 2, 85-94]. Comparison of NAT2/PNF-1 binding sites from a variety of nodulin genes revealed the conservation of the short consensus core motif TATTTWAT, and evidence was obtained that this sequence is important for protein recognition. Cross-recognition by PNF-1 of a protein binding site in a soybean seed protein gene points to the existence of a ubiquitous family of factors with related binding affinities. Our data suggest that PNF-1 and PRF-1 belong to an evolutionarily conserved group of nuclear factors that interact with specific A/T-rich sequences in a diverse set of plant genes. We consider the possible role of these factors in coregulating the expression of gln-gamma and other late nodulin genes.  相似文献   

20.
The nitrogen-fixing symbiosis between Rhizobiaceae and legumes is one of the best-studied interactions established between prokaryotes and eukaryotes. The plant develops root nodules in which the bacteria are housed, and atmospheric nitrogen is fixed into ammonia by the rhizobia and made available to the plant in exchange for carbon compounds. It has been hypothesized that this symbiosis evolved from the more ancient arbuscular mycorrhizal (AM) symbiosis, in which the fungus associates with roots and aids the plant in the absorption of mineral nutrients, particularly phosphate. Support comes from several fronts: 1) legume mutants where Nod(-) and Myc(-) co-segregate, and 2) the fact that various early nodulin (ENOD) genes are expressed in legume AM. Both strongly argue for the idea that the signal transduction pathways between the two symbioses are conserved. We have analyzed the responses of four classes of non-nodulating Melilotus alba (white sweetclover) mutants to Glomus intraradices (the mycorrhizal symbiont) to investigate how Nod(-) mutations affect the establishment of this symbiosis. We also re-examined the root hair responses of the non-nodulating mutants to Sinorhizobium meliloti (the nitrogen-fixing symbiont). Of the four classes, several sweetclover sym mutants are both Nod(-) and Myc(-). In an attempt to decipher the relationship between nodulation and mycorrhiza formation, we also performed co-inoculation experiments with mutant rhizobia and Glomus intraradices on Medicago sativa, a close relative of M. alba. Even though sulfated Nod factor was supplied by some of the bacterial mutants, the fungus did not complement symbiotically defective rhizobia for nodulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号