首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
IntroductionUpdating the distribution and natural infection status of triatomine bugs is critical for planning, prioritizing, and implementing strategies to control Chagas disease (CD), especially after vector reduction programs. After carrying out a control program, the Department of Boyaca contains the highest number of Colombian municipalities certified by PAHO to be free of intradomiciliary transmission of Trypanosoma cruzi by Rhodnius prolixus. The present work describes the spatial distribution, natural infection (NI), and molecular characterization of T. cruzi in synanthropic triatomines from the Department of Boyaca in 2017 and 2018.Materials and methodsAn entomological survey was conducted in 52 municipalities in Boyaca known to have had previous infestations of triatomine bugs. Insects were collected through active searches carried out by technical personnel from the Secretary of Health and community members using Triatomine Collection Stations (PITs-acronym in Spanish). For evaluation of natural infection, triatomines were identified morphologically and grouped in pools of one to five individuals of the same species collected in the same household. DNA derived from the feces of each pool of insects was analyzed by PCR for the presence of T. cruzi using primers flanking the satellite DNA of the parasite. SL-IR primers were used to differentiate TCI from the other DTUs and to identify different genotypes. The distribution of the collected triatomines was analyzed to determine any vector hotspots using spatial recreation.ResultsA total of 670 triatomine bugs was collected, belonging to five species: Triatoma dimidiata (73.2%), Triatoma venosa (16.7%), Panstrongylus geniculatus (5.7%), Rhodnius prolixus (4.4%), and Panstrongylus rufotuberculatus (0.4%), from 29 of the 52 municipalities. In total, 71.6% of the bugs were collected within houses (intradomiciliary) and the rest around the houses (peridomiciliary). Triatoma dimidiata was the most widely distributed species and had the highest natural infection index (37.8%), followed by T. venosa and P. geniculatus. TcI was the only DTU found, with the TcI Dom genotype identified in 80% of positive samples and TcI sylvatic in the other insects. Spatial analysis showed clusters of T. dimidiata and T. venosa in the northeast and southwest regions of Boyaca.ConclusionsAfter some municipalities were certified free of natural transmission within houses (intradomiciliary transmission) of T. cruzi by R. prolixus, T. dimidiata has become the most prevalent vector present, and represents a significant risk of resurgent CD transmission. However, T. venosa, P. geniculatus, and P. rufotuberculatus also contribute to the increased risk of transmission. The presence of residual R. prolixus may undo the successes achieved through vector elimination programs. The molecular and spatial analysis used here allows us to identify areas with an ongoing threat of parasite transmission and improve entomological surveillance strategies.  相似文献   

2.
RNA interference (RNAi) has been widely employed as a useful alternative to study gene function in insects, including triatomine bugs. However, several aspects related to the RNAi mechanism and functioning are still unclear. The aim of this study is to investigate the persistence and the occurrence of systemic and parental RNAi in the triatomine bug Rhodnius prolixus. For such, the nitrophorins 1 to 4 (NP1-4), which are salivary hemeproteins, and the rhodniin, an intestinal protein, were used as targets for RNAi. The dsRNA for both molecules were injected separately into 3rd and 5th instar nymphs of R. prolixus and the knockdown (mRNA levels and phenotype) were progressively evaluated along several stages of the insect's life. We observed that the NP1-4 knockdown persisted for more than 7 months after the dsRNA injection, and at least 5 months in rhodniin knockdown, passing through various nymphal stages until the adult stage, without continuous input of dsRNA. The parental RNAi was successful from the dsRNA injection in 5th instar nymphs for both knockdown targets, when the RNAi effects (mRNA levels and phenotype) were observed at least in the 2nd instar nymphs of the F1 generation. However, the parental RNAi did not occur when the dsRNA was injected in the 3rd instars. The confirmation of the long persistence and parental transmission of RNAi in R. prolixus can improve and facilitate the utilization of this tool in insect functional genomic studies.  相似文献   

3.
Chagas disease is a trypanosomiasis whose causative agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous insects known as triatomines and affects a large proportion of South America. The digestive tract of the insect vectors in which T. cruzi develops constitutes a dynamic environment that affects the development of the parasite. Thus, we set out to investigate the chemical composition of the triatomine intestinal tract through a metabolomics approach. We performed Direct Infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry on fecal samples of three triatomine species (Rhodnius prolixus, Triatoma infestans, Panstrongylus megistus) fed with rabbit blood. We then identified groups of metabolites whose frequencies were either uniform in all species or enriched in each of them. By querying the Human Metabolome Database, we obtained putative identities of the metabolites of interest. We found that a core group of metabolites with uniform frequencies in all species represented approximately 80% of the molecules detected, whereas the other 20% varied among triatomine species. The uniform core was composed of metabolites of various categories, including fatty acids, steroids, glycerolipids, nucleotides, sugars, and others. Nevertheless, the metabolic fingerprint of triatomine feces differs depending on the species considered. The variable core was mainly composed of prenol lipids, amino acids, glycerolipids, steroids, phenols, fatty acids and derivatives, benzoic acid and derivatives, flavonoids, glycerophospholipids, benzopyrans, and quinolines. Triatomine feces constitute a rich and varied chemical medium whose constituents are likely to affect T. cruzi development and infectivity. The complexity of the fecal metabolome of triatomines suggests that it may affect triatomine vector competence for specific T. cruzi strains. Knowledge of the chemical environment of T. cruzi in its invertebrate host is likely to generate new ways to understand the factors influencing parasite proliferation as well as methods to control Chagas disease.  相似文献   

4.
Several triatomine species aggregate over conspecific faeces. In some domestic species, this behaviour might help individuals to find their refuges because faeces are usually deposited around such places. In the present study, the defaecation behaviour of the triatomine bug Rhodnius prolixus Stål (Heteroptera: Reduviidae) is described in detail, including the temporal pattern of aggregation of nymphs with different nutritional status to faeces of different post‐deposition times. First, using an experimental arena, the spatial distribution of faecal deposition spots released by nymphs, in relation to the position of a refuge, is recorded. The results show that a high density of faeces is deposited inside the refuge, and few and distant spots, in relation to the position of the refuge, are dropped outside. Second, whether the aggregation behaviour of nymphs is altered by the time elapsed from deposition of the faeces, and by the nutritional status of the insects, is determined. The post‐deposition time of the faeces strongly modulates the aggregation response of the insects. Differences in aggregation between fed and unfed insects are only marginally significant; however, different temporal windows of aggregation according to the post‐deposition times of the faeces are demonstrated between bugs of different nutritional status. The results are discussed with respect to the relevance of the aggregation signal in relation to the characteristics of the natural refuges used by R. prolixus.  相似文献   

5.
Hematophagous insects transmit many of the most dangerous parasitic diseases. The transmission usually occurs during hematophagy or just after as this is when the vector and the host are in contact. The contact time is determined by the feeding performance of the insect in each host. In triatomines, feeding performance interferes with both their life cycle and the vectorial competence to transmit the hemoflagellate Trypanosoma cruzi. Triatomine bugs are vessel feeders, obtaining their blood meals directly from the vessels (venules or arterioles) of their vertebrate hosts. The host blood intake rate is not constant during the feeding, and the sucking frequency of triatomines tends to be higher and to contain fewer interruptions in pigeons than in mice. To identify the difficulties encountered by triatomine bugs in obtaining blood meals from mouse skin, we used intravital microscopy techniques associated with electromyograms of the cibarial pump. To monitor the vibration of the cannulated vessels and the blood flow through the head of the insect during the engorgement phase, we introduced a novel method for image analysis. The mean number of vessels used during a Rhodnius prolixus blood meal was 3.4 ± 1.2, and the insects fed more in venules (63%) than in arterioles (37%). An important increase in vascular permeability was observed throughout the feeding. Platelet aggregation, rolling and leukocyte adherence were analyzed on the venular endothelium, showing remarkable increases for some time following the R. prolixus feeding. The reduction in sucking frequency that was observed during insect feeding was likely due to the increased cibarial pump filling time. The monitoring of the vessel wall pulsation also permitted the registration of regurgitation-like movements during blood pumping, with these movements being recorded mostly during the second half of the feeding. The evaluation of blood flow through the head of the insect suggested that the regurgitation-like movements were not true regurgitations and were caused by abrupt difficulties in the function of the cibarial pump. The role of the platelet plugs and the changes in blood viscosity at the R. prolixus feeding site are discussed. The method introduced in the present study to analyze the images brings new insights into the interaction between hematophagous vectors and their hosts, reinforcing the importance of insect saliva throughout the feeding process.  相似文献   

6.
The quick detection of domestic and peridomestic triatomines in their environments becomes difficult without the use of dislodgement substances that flush them out from their shelters. At present, tetramethrin 0.2% is being widely used in control programs. Although it is an efficient dislodging agent, its toxicity might affect the health of captured triatomines, of other insects and, to a lesser extent, of other animals, including humans. Here, we tested if semiochemicals released by disturbed adults of Triatoma infestans and/or Rhodnius prolixus can make larvae of the same species exit from their refuges. In a walking olfactometer we found that: 1) larvae of T. infestans were repelled by the odors released by disturbed adults of their own species and of R. prolixus, 2) larvae of R. prolixus did not change their behavior in the presence of odors released by adults of both species, and 3) activity levels were not modulated by these odors in any of both species. Besides, in pseudo‐natural conditions we found an increased flushing‐out activity of larvae of T. infestans when their shelters were sprayed with isobutyric acid or 3‐pentanol, and of larvae of R. prolixus when sprayed with 3‐methyl1butanol. We succeeded in this work to dislodge larvae of triatomines from artificial shelters using natural volatile compounds, allowing the capture of live bugs for further investigations (e.g., xenodiagnosis or genetic studies) and favoring ecological aspects (e.g., minimizing environmental insecticide‐contamination and non‐targeted mortality).  相似文献   

7.

Background

As a result of evolution, the biology of triatomines must have been significantly adapted to accommodate trypanosome infection in a complex network of vector-vertebrate-parasite interactions. Arthropod-borne parasites have probably developed mechanisms, largely still unknown, to exploit the vector-vertebrate host interactions to ensure their transmission to suitable hosts. Triatomines exhibit a strong negative phototaxis and nocturnal activity, believed to be important for insect survival against its predators.

Methodology/Principal Findings

In this study we quantified phototaxis and locomotion in starved fifth instar nymphs of Rhodnius prolixus infected with Trypanosoma cruzi or Trypanosoma rangeli. T. cruzi infection did not alter insect phototaxis, but induced an overall 20% decrease in the number of bug locomotory events. Furthermore, the significant differences induced by this parasite were concentrated at the beginning of the scotophase. Conversely, T. rangeli modified both behaviors, as it significantly decreased bug negative phototaxis, while it induced a 23% increase in the number of locomotory events in infected bugs. In this case, the significant effects were observed during the photophase. We also investigated the expression of Rpfor, the triatomine ortholog of the foraging gene known to modulate locomotion in other insects, and found a 4.8 fold increase for T. rangeli infected insects.

Conclusions/Significance

We demonstrated for the first time that trypanosome infection modulates the locomotory activity of the invertebrate host. T. rangeli infection seems to be more broadly effective, as besides affecting the intensity of locomotion this parasite also diminished negative phototaxis and the expression of a behavior-associated gene in the triatomine vector.  相似文献   

8.
Hematophagous arthropods such as Triatomainfestans, the vector of Trypanosomacruzi, elicit host-immune responses during feeding. Characterization of antibody responses to salivary antigens offers the potential to develop immunologically based monitoring techniques for exposure to re-emergent triatomine bug populations in peridomestic animals. IgG-antibody responses to the salivary antigens of T.infestans have been detected in chickens as soon as 2 days after the first exposure to five adult bugs. Chickens and guinea pigs regularly exposed to this number of triatomines showed a significantly lower anti-saliva antibody titre than animals exposed to 25 adults and fifth instars of four different T.infestans strains originating from Bolivia and from Northern Chile. Highly immunogenic salivary antigens of 14 and 21 kDa were recognised by all chicken sera and of 79 kDa by all guinea pig sera. Cross-reactivity studies using saliva or salivary gland extracts from different hematophagous species, e.g. different triatomines, bed bugs, mosquitoes, sand flies and ticks, as well as chicken sera exposed to triatomines and mosquitoes, demonstrated that the 14 and 21 kDa salivary antigens were only found in triatomines. Sera from peridomestic chickens and guinea pigs in sites of known T.infestans challenge in Bolivia also recognised the 14 and 21 kDa antigens. These represent promising epidemiological markers for the detection of small numbers of feeding bugs and hence may be a new tool for vector surveillance in Chagas disease control programs.  相似文献   

9.
The characterization of sulfated glycosaminoglycans (GAGs) in hematophagous arthropod vectors in general has been limited, with the exception of the studies in the triatomine Rhodnius prolixus. Heparan sulfate (HS) and chondroitin sulfate (CS) were previously identified and structurally characterized in extracts of whole bodies of fourth instar larvae of R. prolixus. Recently, we showed the expression of these two sulfated GAGs in specific body tissues of adult males and females and in embryos of R. prolixus. In the present work, we identified and compared the sulfated GAG composition in specific tissues of adult insects and in embryos of another triatomine species, Triatoma brasiliensis. Sulfated GAGs were isolated from the fat body, intestinal tract, and the reproductive tracts of adult insects and from embryos. Only HS and CS were found in the tissues analyzed. The present results extend the initial observations on the sulfated GAG composition in R. prolixus by showing that these molecules are widely distributed among internal organs of triatomines. These observations may be useful for future investigations aiming to evaluate the possible implication of these compounds in physiological events that take place in a specific organ(s) in these insects.  相似文献   

10.
Saliva of haematophagous arthropods contain biomolecules involved directly or indirectly with the haematophagy process, and among them are encountered some complement system inhibitors. The most obvious function for these inhibitors would be the protection of the midgut against injury by the complement. To investigate this hypothesis, Triatoma brasiliensis nymphs were forced to ingest human serum in conditions in which the protection of midgut by the inhibitors is bypassed. In these conditions, the anterior midgut epithelium was injured by the complement, causing cell death. Once some insects such as Aedes aegypti have no salivary inhibitors, we hypothesized the existence of intestinal inhibitors. The inhibitory activity was investigated in the intestine of A. aegypti as well as in the saliva and intestine of other three triatomine species (T. brasiliensis, T. infestans and Rhodnius prolixus) using an immunological method able to determine the level of deposition of some complement factors (C1q, C3b, or C4b) on the surface of complement activator molecules linked to microplates. This methodology permitted to identify which points along the activation phase of the complement cascade were inhibited. As expected, soluble contents of A. aegypti''s intestine was capable to inhibit C3b deposition by the classical and alternative pathways. Saliva or soluble intestinal contents, obtained from triatomines were unable to inhibit C1q deposition by the classical pathway. C4b deposition by the classical pathway was inhibited by the intestinal contents from the three triatomines. On the other hand, only T. brasiliensis saliva inhibited C4b deposition. Both, saliva and intestinal contents from all triatomines were able to inhibit C3b deposition in the classical and alternative pathways. None of the material extracted from the intestinal cell membranes from the triatomines inhibited C3b deposition in the classical pathway. The existence of complement inhibitors may have important biological consequences which are discussed in detail.  相似文献   

11.
Rhodnius prolixus is a triatomine bug acting as a relevant vector of Chagas disease for which the genome sequence has been recently made available. Based on this information, a set of olfactory (ORs) and ionotropic receptor (IRs) genes potentially related to olfactory processes was characterized, and the expression patterns along bug development and in different structures potentially involved in promoting chemosensory-mediated behaviors were studied. For this, diverse bioinformatic procedures were used to validate gene models analyzing their structural and functional features and designing specific primers. Evolutionary relationships among R. prolixus olfactory coreceptors (RproOrco, RproIR25a, RproIR8a and RproIR76b) and their orthologues from other insects were shown to have mostly good bootstrap support values in phylogenetic trees. Moreover, antennal expression was confirmed for most genes included in the study. Both ORs and IRs showed antennal expression along the whole development of bugs of this species, with few exceptional receptors showing gradually increasing expression or expression restricted to the antennae of adult bugs. Finally, the expression of most of the selected genes was confirmed in other structures, such as rostri, tarsi, tibial pads and genitalia, which are potentially involved in promoting chemosensory-mediated behaviors. These results are discussed in terms of their relevance to advance in the understanding of the molecular bases of triatomine behavior.  相似文献   

12.
The phrase, “T. rangeli is pathogenic to its insect vector,” is commonly found in peer‐reviewed publications on the matter, such that it has become the orthodox view of this interaction. In a literature survey, we identified over 20 papers with almost the exact phrase and several others alluding to it. The idea is of particular importance in triatomine population dynamics and the study of vector‐borne T. cruzi transmission, as it could mean that triatomines infected with T. rangeli have lower fitness than uninfected insects. Trypanosoma rangeli pathogenicity was first observed in a series of studies carried out over fifty years ago using the triatomine species Rhodnius prolixus. However, there are few studies of the effect of T. rangeli on its other vector species, and several of the studies were carried out with R. prolixus under non‐physiological conditions. Here, we re‐evaluate the published studies that led to the conclusion that T. rangeli is pathogenic to its vector, to determine whether or not this indeed is the “true” effect of T. rangeli on its triatomine vector.  相似文献   

13.
Oriented responses of both R. prolixus and T. infestans adults were recorded on a servosphere to mouse-odour, one of its components (CO2), and to rabbit urine-odour. The volatiles were delivered in an air-stream under controlled conditions which excluded other sensory modalities. In stimulus-free air the triatomines walked preferentially downwind in straight bouts interrupted by stops or periods at relatively low speeds, all of variable duration. In odour-laden air, bugs maintained their typical walking habit but switched from negative to positive anemotaxis. The characteristic response to odour onset was to stop, sample the air with the antennae, turn upwind in situ, and then walk off in the direction of the source for at least a few seconds, i.e., odour mediated anemotaxis. Mouse-odour caused T. infestans to increase its speed to 5.3 cms-1. Both species continued with the upwind response for some time after odour delivery ceased, but the crosswind component of the tracks was more prominent during this period — an effort, we presume, by the bugs to re-contact an odour plume. This investigation provides unequivocal evidence for host finding in triatomines by olfactory cues alone.  相似文献   

14.
Chagas disease or American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Once known as an endemic health problem of poor rural populations in Latin American countries, it has now spread worldwide. The parasite is transmitted by triatomine bugs, of which Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae) is one of the vectors and a model organism. This species occurs mainly in Central and South American countries where the disease is endemic. Disease prevention focuses on vector control programs that, in general, rely intensely on insecticide use. However, the massive use of chemical insecticides can lead to resistance. One of the major mechanisms is known as metabolic resistance that is associated with an increase in the expression or activity of detoxification genes. Three of the enzyme families that are involved in this process – carboxylesterases (CCE), glutathione s-transferases (GST) and cytochrome P450s (CYP) – are analyzed in the R. prolixus genome. A similar set of detoxification genes to those of the Hemipteran Acyrthosiphon pisum but smaller than in most dipteran species was found in R. prolixus genome. All major CCE classes (43 genes found) are present but the pheromone/hormone processing class had fewer genes than usual. One main expansion was detected on the detoxification/dietary class. The phosphotriesterase family, recently associated with insecticide resistance, was also represented with one gene. One microsomal GST gene was found and the cytosolic GST gene count (14 genes) is extremely low when compared to the other hemipteran species with sequenced genomes. However, this is similar to Apis mellifera, a species known for its deficit in detoxification genes. In R. prolixus 88 CYP genes were found, with representatives in the four clans (CYP2, CYP3, CYP4 and mitochondrial) usually found in insects. R. prolixus seems to have smaller species-specific expansions of CYP genes than mosquitoes and beetles, among others. The number of R. prolixus CYP genes is similar to the hemipteran Ac. pisum, although with a bigger expansion in CYP3 and CYP4 clans, along with several gene fragments, mostly in CYP4 clan. Eleven founding members of new families were detected, consisting of ten genes in the CYP3 clan and 1 gene in the CYP4 clan. Members of these clans were proposed to have important detoxification roles in insects. The identification of CCE, GST and CYP genes is of utmost importance for directing detoxification studies on triatomines that can help insecticide management strategies in control programs.  相似文献   

15.
Triatomines are haematophagous insects in all post-embryonic life stages. They are vectors of Trypanosoma cruzi, the causative agent of Chagas disease. Their vectorial ability is influenced by their feeding performance, which varies greatly amongst species. Recent work showed that inhibition of the coagulation process in the anterior midgut (crop) environment considerably influences the blood meal size. In this work, we performed a comparative study of the level of anticoagulant activity in the saliva and crop contents of three triatomine species - Triatoma infestans, Triatoma brasiliensis and Rhodnius prolixus - and correlated this with their feeding performance on live hosts. Moreover, the feeding parameters on a large diameter vessel influenced by the crop anticoagulants were evaluated in detail. The anticoagulant activity was significantly higher in the crop contents than in salivary glands, varying from 1.6-fold higher for R. prolixus to 70-fold higher for T. brasiliensis. Amongst the species, T. brasiliensis had the lowest crop anticoagulant activity, the lowest concentration of thrombin inhibitor, and took the longest to feed. Triatoma brasiliensis nymphs that had their intestinal anticoagulant (brasiliensin) knocked down by RNA interference had the lowest capacity to maintain cibarial pump frequency at higher levels throughout the feeding process and consequently a lower ingestion rate (mg/min), even when fed under favourable conditions (large diameter vessel). However, the feeding difficulty for brasiliensin knockdown T. brasiliensis nymphs was reversed by treating the host mice with heparin (a potent systemic anticoagulant) before blood feeding. The results indicate that crop anticoagulant activity influences modulation of the blood-pumping frequency to the intestine and significantly affects the feeding efficiency of triatomine spp. on live hosts.  相似文献   

16.
Mass sequencing of cDNA libraries from salivary glands of triatomines has resulted in the identification of many novel genes of unknown function. The aim of the present work was to develop a functional RNA interference (RNAi) technique for Rhodnius prolixus, which could be widely used for functional genomics studies in triatomine bugs. To this end, we investigated whether double-stranded RNA (dsRNA) can inhibit gene expression of R. prolixus salivary nitrophorin 2 (NP2) and what impact this might have on anticoagulant and apyrase activity in the saliva. dsRNA was introduced by two injections or by ingestion. RT-PCR of the salivary glands showed that injections of 15 microg of NP2 dsRNA in fourth-instar nymphs reduced gene expression by 75+/-14% and that feeding 1 microg/microL of NP2 dsRNA into second-instar nymphs (approx. 13 microg in total) reduced gene expression by 42+/-10%. Phenotype analysis showed that saliva of normal bugs prolonged plasma coagulation by about four-fold when compared to saliva of knockdown bugs. These results and the light color of the salivary gland content from some insects are consistent with the knockdown findings. The findings suggest that RNAi will prove a highly valuable functional genomics technique in triatomine bugs. The finding that feeding dsRNA can induce knockdown is novel for insects.  相似文献   

17.
Triatomine bugs aggregate with conspecifics inside shelters during daylight hours. At dusk, they leave their refuges searching for hosts on which to blood feed. After finding a host, triatomines face the threat of being killed, because hosts often prey on them. As it is known that many parasites induce the predation of intermediate hosts to promote transmission, and that ingestion of Trypanosoma cruzi-infected bugs represents a very effective means for mammal infection, we hypothesized that trypanosomes induce infected bugs to take increased risk, and, as a consequence, be predated when approaching a host. Therefore, we evaluated whether the predation risk and predation rates endured by Rhodnius prolixus increase when infected with T. cruzi. Assays were performed in square glass arenas offering one central refuge to infected and uninfected 5th instar nymphs. A caged mouse was introduced in each arena after a three-day acclimation interval to activate sheltered insects and induce them to approach it. As hypothesized, a significantly higher proportion of infected insects was predated when compared with uninfected ones (36% and 19%, respectively). Indeed, T. cruzi-infected bugs took higher risk (Approximation Index = 0.642) when compared with healthy ones (Approximation Index = 0.302) and remained outside the shelters when the host was removed from the arena. Our results show that infection by T. cruzi induces bugs to assume higher risk and endure higher predation rates. We reveal a hitherto unknown trypanosome-vector interaction process that increases infected bug predation, promoting increased rates of robust oral transmission. The significant consequences of the mechanism revealed here make it a fundamental component for the resilient maintenance of sylvatic, peridomestic and domestic cycles.  相似文献   

18.
Efforts have been made to develop vertebrate odor‐based attractants to lure hematophagous triatomines into traps. However, more work is needed to reach a practical, cheap, and efficient odor lure. We carried out attraction and capture tests in a dual‐choice olfactometer and a pitfall trap. Here we report that a three‐component, CO2‐free, synthetic blend of vertebrate odor (consisting of ammonia, L(+) lactic acid and hexanoic acid, and known as Sweetscent®) significantly induces 3rd‐instar Rhodnius prolixus and Triatoma infestans nymphs to fall into the test capture‐tube of the olfactometer. Blend constituents presented singly or in two‐component blends did not evoke a response and, therefore, we propose that the insects respond specifically to the three‐component blend in a synergistic way. When tested in a pitfall trap in an experimental arena, this blend induced capture in 37.5% of the lured traps, whereas 9% of the nymphs tested were captured in a single night. No insects were captured in control traps. Our work represents a proof‐of‐concept regarding capture of triatomines using host odor‐based, CO2‐free synthetic mixtures as lures for pitfall traps. CO2‐free lures are more practical for field work than natural or CO2‐containing synthetic blends.  相似文献   

19.
The paper analyses the antennal sensilla pattern of 22 species of triatomine bugs (Hemiptera, Reduviidae). The pedicels of species from tribe Rhodniini differ from species of Cavernicolini and Triatomini, mainly by the absence of trichoid and basiconic sensilla and by a greater number of Bristles I. Fifth-instar nymphs of T. sordida and R. pictipes show several differences in sensilla patterns compared with their respective adults. They lack basiconic sensilla and thin-and thick-walled trichoid sensilla over the first flagellar segment and over the proximal half of the second flagellar segment. T. sordida nymphs also lack these sensilla on the pedicel. There appears to be a significant sexual dimorphism in relation to trichoid sensilla in T. sordida, but not in R. pictipes. There exists a remarkable correlation between the density of basiconic and trichoid sensilla on the pedicels of different species, and a crude estimation of habitat range assessed as number of habitat types reported for each species.  相似文献   

20.
The insect Rhodnius prolixus is responsible for the transmission of Trypanosoma cruzi, which is the etiological agent of Chagas disease in areas of Central and South America. Besides this, it can be infected by other trypanosomes such as Trypanosoma rangeli. The effects of these parasites on vectors are poorly understood and are often controversial so here we focussed on possible negative effects of these parasites on the reproductive performance of R. prolixus, specifically comparing infected and uninfected couples. While T. cruzi infection did not delay pre-oviposition time of infected couples at either temperature tested (25 and 30°C) it did, at 25°C, increase the e-value in the second reproductive cycle, as well as hatching rates. Meanwhile, at 30°C, T. cruzi infection decreased the e-value of insects during the first cycle and also the fertility of older insects. When couples were instead infected with T. rangeli, pre-oviposition time was delayed, while reductions in the e-value and hatching rate were observed in the second and third cycles. We conclude that both T. cruzi and T. rangeli can impair reproductive performance of R. prolixus, although for T. cruzi, this is dependent on rearing temperature and insect age. We discuss these reproductive costs in terms of potential consequences on triatomine behavior and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号