首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of beta(1)-null GD25 cells ectopically expressing the beta(1)A integrin subunit, we provide evidence for the existence of a cross talk between beta(1) and alpha(V) integrins that affects the ratio of alpha(V)beta(3) and alpha(V)beta(5) integrin cell surface levels. In particular, we demonstrate that a down-regulation of alpha(V)beta(3) and an up-regulation of alpha(V)beta(5) occur as a consequence of beta(1)A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms beta(1)B and beta(1)D, as well as two beta(1) cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (beta(1)TR) or only its "variable" region (beta(1)COM), we show that the effects of beta(1) over alpha(V) integrins take place irrespective of the type of beta(1) isoform, but require the presence of the "common" region of the beta(1) cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby beta(1) integrins exert their trans-acting functions, we have found that the down-regulation of alpha(V)beta(3) is due to a decreased beta(3) subunit mRNA stability, whereas the up-regulation of alpha(V)beta(5) is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability.  相似文献   

2.
3.
4.
High glucose levels are associated with changes in macrophage polarisation and evidence indicates that the sustained or even short-term high glucose levels modulate inflammatory responses in macrophages. However, the mechanism by which macrophages can sense the changes in glucose levels are not clearly understood. We find that high glucose levels rapidly increase the α-E catenin protein level in RAW264.7 macrophages. We also find an attenuation of glucose-induced increase in α-E catenin when hexosamine biosynthesis (HB) pathway is inhibited either with glutamine depletion or with the drugs azaserine and tunicamycin. This indicates the involvement of HB pathway in this process. Then, we investigated the potential role of α-E catenin in glucose-induced macrophage polarisation. We find that the reduction in α-E catenin level using siRNA attenuates the glucose-induced changes of both IL-1β and IL-12 mRNA levels under LPS-stimulated condition but does not affect TNF-α expression. Together this indicates that α-E catenin can sense the changes in glucose levels in macrophages via HB pathway and also can modulate the glucose-induced gene expression of inflammatory markers such as IL-1β and IL-12. This identifies a new part of the mechanism by which macrophages are able to respond to changes in glucose levels.  相似文献   

5.
Vascular endothelial cells (ECs) form a critical interface between blood and tissues that maintains whole-body homeostasis. In COVID-19, disruption of the EC barrier results in edema, vascular inflammation, and coagulation, hallmarks of this severe disease. However, the mechanisms by which ECs are dysregulated in COVID-19 are unclear. Here, we show that the spike protein of SARS-CoV-2 alone activates the EC inflammatory phenotype in a manner dependent on integrin ⍺5β1 signaling. Incubation of human umbilical vein ECs with whole spike protein, its receptor-binding domain, or the integrin-binding tripeptide RGD induced the nuclear translocation of NF-κB and subsequent expression of leukocyte adhesion molecules (VCAM1 and ICAM1), coagulation factors (TF and FVIII), proinflammatory cytokines (TNFα, IL-1β, and IL-6), and ACE2, as well as the adhesion of peripheral blood leukocytes and hyperpermeability of the EC monolayer. In addition, inhibitors of integrin ⍺5β1 activation prevented these effects. Furthermore, these vascular effects occur in vivo, as revealed by the intravenous administration of spike, which increased expression of ICAM1, VCAM1, CD45, TNFα, IL-1β, and IL-6 in the lung, liver, kidney, and eye, and the intravitreal injection of spike, which disrupted the barrier function of retinal capillaries. We suggest that the spike protein, through its RGD motif in the receptor-binding domain, binds to integrin ⍺5β1 in ECs to activate the NF-κB target gene expression programs responsible for vascular leakage and leukocyte adhesion. These findings uncover a new direct action of SARS-CoV-2 on EC dysfunction and introduce integrin ⍺5β1 as a promising target for treating vascular inflammation in COVID-19.  相似文献   

6.
Phosphorylation of the translation initiation factor eIF2α is a rapid and vital cellular defence against many forms of stress. In mammals, the levels of eIF2α phosphorylation are set through the antagonistic action of four protein kinases and two heterodimeric protein phosphatases. The phosphatases are composed of the catalytic subunit PP1 and one of two related non-catalytic subunits, PPP1R15A or PPP1R15B (R15A or R15B). Here, we generated a series of R15 truncation mutants and tested their properties in mammalian cells. We show that substrate recruitment is encoded by an evolutionary conserved region in R15s, R15A325–554 and R15B340–639. G-actin, which has been proposed to confer selectivity to R15 phosphatases, does not bind these regions, indicating that it is not required for substrate binding. Fragments containing the substrate-binding regions but lacking the PP1-binding motif trapped the phospho-substrate and caused accumulation of phosphorylated eIF2α in unstressed cells. Activity assays in cells showed that R15A325–674 and R15B340–713, encompassing the substrate-binding region and the PP1-binding region, exhibit wild-type activity. This work identifies the substrate-binding region in R15s, that functions as a phospho-substrate trapping mutant, thereby defining a key region of R15s for follow up studies.  相似文献   

7.
8.
The amyloid-β peptide (Aβ) can mediate cell attachment by binding to β1 integrins through an arg-his-asp sequence. We show here that the α5β1 integrin, a fibronectin receptor, is an efficient binder of Aβ, and mediates cell attachment to nonfibrillar Aβ. Cells engineered to express α5β1 internalized and degraded more added Aβ1-40 than did α5β1-negative control cells. Deposition of an insoluble Aβ1-40 matrix around the α5β1-expressing cells was reduced, and the cells showed less apoptosis than the control cells. Thus, the α5β1 integrin may protect against Aβ deposition and toxicity, which is a course of Alzheimer's disease lesions.  相似文献   

9.
10.
α-Ionone, α-methylionone, and α-isomethylionone were converted by Aspergillus niger JTS 191. The individual bioconversion products from α-ionone were isolated and identified by spectrometry and organic synthesis. The major products were cis-3-hydroxy-α-ionone, trans-3-hydroxy-α-ionone, and 3-oxo-α-ionone. 2,3-Dehydro-α-ionone, 3,4-dehydro-β-ionone, and 1-(6,6-dimethyl-2-methylene-3-cyclohexenyl)-buten-3-one were also identified. Analogous bioconversion products from α-methylionone and α-isomethylionone were also identified. From results of gas-liquid chromatographic analysis during the fermentation, we propose a metabolic pathway for α-ionones and elucidation of stereochemical features of the bioconversion.  相似文献   

11.
A regulated order of adhesion events directs leukocytes from the vascular compartment into injured tissues in response to inflammatory stimuli. We show that on human T cells, the interaction of the β2 integrin leucocyte function–associated antigen-1 (LFA-1) with its ligand intercellular adhesion molecule-1 (ICAM-1) will decrease adhesion mediated by α4β1 and, to a lesser extent, α5β1. Similar inhibition is also seen when T cells are exposed to mAb 24, which stabilizes LFA-1 in an active state after triggering integrin function through divalent cation Mg2+, PdBu, or T cell receptor/ CD3 complex (TCR/CD3) cross-linking. Such cross talk decreases α4β1 integrin–mediated binding of T cells to fibronectin and vascular cell adhesion molecule-1 (VCAM-1). In contrast, ligand occupancy or prolonged activation of β1 integrin has no effect on LFA-1 adhesion to ICAM-1. We also show that T cell migration across fibronectin, unlike adhesion, is mediated solely by α5β1, and is increased when the α4β1-mediated component of fibronectin adhesion is decreased either by cross talk or the use of α4-blocking mAb. The ability of mAb 24 Fab′ fragments to induce cross talk without cross-linking LFA-1 suggests signal transduction through the active integrin. These data provide the first direct evidence for cross talk between LFA-1 and β1 integrins on T cells. Together, these findings imply that activation of LFA-1 on the extravasating T cell will decrease the binding to VCAM-1 while enhancing the subsequent migration on fibronectin. This sequence of events provides a further level of complexity to the coordination of T cell integrins, whose sequential but overlapping roles are essential for transmigration.  相似文献   

12.
13.
14.
GM‐CSF is a potent inflammatory cytokine regulating myeloid cell differentiation, hematopoiesis, and various other functions. It is functionally associated with a number of inflammatory pathologies including rheumatoid arthritis and inflammatory bowel disease. GM‐CSF has been found to promote NLRP3‐dependent IL‐1β secretion, which may have a significant role in driving inflammatory pathologies. However, the molecular mechanisms remain unknown. Here, we show that GM‐CSF induces IL‐1β secretion through a ROS‐dependent pathway. TNF is required for reactive oxygen species (ROS) generation that strikingly does not promote NLRP3 activation, but instead drives ubiquitylation of IL‐1β, promoting its cleavage through basal NRLP3 activity. GM‐CSF regulates this pathway through suppression of antioxidant responses via preventing upregulation of NRF2. Thus, the pro‐inflammatory effect of GM‐CSF on IL‐1β is through suppression of antioxidant responses, which leads to ubiquitylation of IL‐1β and enhanced processing. This study highlights the role of metabolic regulation of inflammatory signaling and reveals a novel mechanism for GM‐CSF to promote inflammation.  相似文献   

15.
Mammalian adenoviruses (AdVs) comprise more than ~350 types including over 100 human (HAdVs) and just three mouse AdVs (MAdVs). While most HAdVs initiate infection by high affinity/avidity binding of their fiber knob (FK) protein to either coxsackievirus AdV receptor (CAR), CD46 or desmoglein (DSG)-2, MAdV-1 (M1) infection requires arginine-glycine-aspartate (RGD) binding integrins. To identify the receptors mediating MAdV infection we generated five novel reporter viruses for MAdV-1/-2/-3 (M1, M2, M3) transducing permissive murine (m) CMT-93 cells, but not B16 mouse melanoma cells expressing mCAR, human (h) CD46 or hDSG-2. Recombinant M1 or M3 FKs cross-blocked M1 and M3 but not M2 infections. Profiling of murine and human cells expressing RGD-binding integrins suggested that αvβ6 and αvβ8 heterodimers are associated with M1 and M3 infections. Ectopic expression of mβ6 in B16 cells strongly enhanced M1 and M3 binding, infection, and progeny production comparable with mαvβ6-positive CMT-93 cells, whereas mβ8 expressing cells were more permissive to M1 than M3. Anti-integrin antibodies potently blocked M1 and M3 binding and infection of CMT-93 cells and hαvβ8-positive M000216 cells. Soluble integrin αvβ6, and synthetic peptides containing the RGDLXXL sequence derived from FK-M1, FK-M3 and foot and mouth disease virus coat protein strongly interfered with M1/M3 infections, in agreement with high affinity interactions of FK-M1/FK-M3 with αvβ6/αvβ8, determined by surface plasmon resonance measurements. Molecular docking simulations of ternary complexes revealed a bent conformation of RGDLXXL-containing FK-M3 peptides on the subunit interface of αvβ6/β8, where the distal leucine residue dips into a hydrophobic pocket of β6/8, the arginine residue ionically engages αv aspartate215, and the aspartate residue coordinates a divalent cation in αvβ6/β8. Together, the RGDLXXL-bearing FKs are part of an essential mechanism for M1/M3 infection engaging murine and human αvβ6/8 integrins. These integrins are highly conserved in other mammals, and may favour cross-species virus transmission.  相似文献   

16.
In acute inflammation, extracellular ATP activates P2X7 ion channel receptors (P2X7R) on M1 polarized macrophages to release pro-inflammatory IL-1β through activation of the caspase-1/nucleotide-binding domain and leucine-rich repeat receptor containing pyrin domain 3 (NLRP3) inflammasome. In contrast, M2 polarized macrophages are critical to the resolution of inflammation but neither actions of P2X7R on these macrophages nor mechanisms by which macrophages switch from pro-inflammatory to anti-inflammatory phenotypes are known. Here, we investigated extracellular ATP signalling over a dynamic macrophage polarity gradient from M1 through M2 phenotypes. In macrophages polarized towards, but not at, M2 phenotype, in which intracellular IL-1β remains high and the inflammasome is intact, P2X7R activation selectively uncouples to the NLRP3-inflammasome activation but not to upstream ion channel activation. In these intermediate M1/M2 polarized macrophages, extracellular ATP now acts through its pyrophosphate chains, independently of other purine receptors, to inhibit IL-1β release by other stimuli through two independent mechanisms: inhibition of ROS production and trapping of the inflammasome complex through intracellular clustering of actin filaments.  相似文献   

17.
18.
Protein phosphatase-1 (PP-1) is involved in the regulation of numerous metabolic processes in mammalian cells. The major isoforms of PP-1, α, γ1, and δ, have nearly identical catalytic domains, but they vary in sequence at their extreme NH2 and COOH termini. With specific antibodies raised against the unique COOH-terminal sequence of each isoform, we find that the three PP-1 isoforms are each expressed in all mammalian cells tested, but that they localize within these cells in a strikingly distinct and characteristic manner. Each isoform is present both within the cytoplasm and in the nucleus during interphase. Within the nucleus, PP-1 α associates with the nuclear matrix, PP-1 γ1 concentrates in nucleoli in association with RNA, and PP-1 δ localizes to nonnucleolar whole chromatin. During mitosis, PP-1 α is localized to the centrosome, PP-1 γ1 is associated with microtubules of the mitotic spindle, and PP-1 δ strongly associates with chromosomes. We conclude that PP-1 isoforms are targeted to strikingly distinct and independent sites in the cell, permitting unique and independent roles for each of the isoforms in regulating discrete cellular processes.  相似文献   

19.
20.
Aspergillus niger JTS 191 was selected from many microorganisms tested as capable of converting ionones to other compounds having aromas. The individual transformation products from β-ionone were isolated and identified by comparison with synthetically derived compounds. The major products were (R)-4-hydroxy-β-ionone and (S)-2-hydroxy-β-ionone. 2-Oxo-, 4-oxo-, 3,4-dehydro-, 2,3-dehydro-4-oxo-, 3,4-dehydro-2-oxo-, (S)-2-acetoxy-, (R)-4-acetoxy-, and 5,6-epoxy-β-ionone and 4-(2,3,6-trimethylphenyl)-but-3-en-2-one were also identified. Analogous transformation products of β-methylionone also were identified. Based on gas-liquid chromatographic analysis during the fermentation, we propose two main oxidative pathways of β-ionone. The results of this study suggest that these transformations of β-ionones may be useful as tobacco-flavoring compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号