首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By the use of directed limitations of secondary substrates, the metabolic flux should be deflected from biomass production to product formation. In order to study the impact of directed limitations caused by various secondary substrates on the growth and product formation of the methylotrophic yeast Hansenula polymorpha, the cultivation systems respiration activity monitoring system (RAMOS) and BioLector were used in parallel. While the RAMOS device allows the online monitoring of the oxygen transfer rate in shake flasks, the BioLector enables in microtiter plates the monitoring of scattered light and the fluorescence intensity of the green fluorescent protein (GFP). Secondary substrate limitations of phosphate, potassium, and magnesium were analyzed in batch fermentations. The sole carbon source was either 10 g/L glucose or 10 g/L glycerol. The expression of the GFP gene is controlled by the FMD promoter (formate dehydrogenase). In batch cultures with glucose as carbon source, a directed limitation of phosphate increased the GFP production 1.87-fold, compared to phosphate unlimited conditions. Under potassium-limited conditions with glycerol as sole carbon source, the GFP production was 1.41-fold higher compared to unlimited conditions. A limitation of the substrate magnesium resulted in a 1.22-fold increase GFP formation in the case of glycerol as carbon source.  相似文献   

2.
Leishmania donovani promastigotes were collected from cultures in log and stationary phases of growth and resuspended in Hank's Balanced Salt Solution containing 1 mM sodium acetate. Changes in the forward and side scattering of the cells were measured by flow cytometry in response to acute changes in osmolality and to the addition of several different substrates. Forward and side scattering of cells from log phase cultures decreased when the osmolality was decreased by the addition of H2O and increased when the osmolality was increased by the addition of NaCl. Cells from stationary phase cultures had about the same forward scatter as cells from log phase cultures, but almost a four-fold lower side scatter, and their side scatter values did not change significantly in response to a reduction in osmolality. Microscopic observation showed that both log and stationary cells got longer and thinner, on average, in response to hyperosmolality. The light scattering properties of log (but not of stationary) cells changed in a reproducible manner when substrates were added to the buffer. The ratio of forward to side scatter increased in the following order: controls in balanced salt solution >aspartate >glutamate, glucose or 2-deoxyglucose >alanine >proline. Thus the light scattering properties of L. donovani promastigotes change with culture age, in response to changes in osmolality, and, in log phase cells, in response to the presence of several substrates.  相似文献   

3.
ATP diphosphohydrolase activity and inorganic pyrophosphatase reached two maxima during cultivation of the low- and high-producing variant ofStreptomyces aureofaciens under conditions of phosphate limitation,i.e. after 30 and 70 h of cultivation. Increased levels of inorganic phosphate in a medium inhibitory to biosynthesis of chlortetracycline markedly decreased the levels of both enzymes. The ATP diphosphohydrolase activity was detected both in the supernatant and membrane fractions of the cell-free preparation of the mycelium.  相似文献   

4.

Background

Small-scale micro-bioreactors have become the cultivation vessel of choice during the first steps of bioprocess development. They combine high cultivation throughput with enhanced cost efficiency per cultivation. To gain the most possible information in the early phases of process development, online monitoring of important process parameters is highly advantageous. One of these important process parameters is the oxygen transfer rate (OTR). Measurement of the OTR, however, is only available for small-scale fermentations in shake flasks via the established RAMOS technology until now. A microtiter plate-based (MTP) μRAMOS device would enable significantly increased cultivation throughput and reduced resource consumption. Still, the requirements of miniaturization for valve and sensor solutions have prevented this transfer so far. This study reports the successful transfer of the established RAMOS technology from shake flasks to 48-well microtiter plates. The introduced μRAMOS device was validated by means of one bacterial, one plant cell suspension culture and two yeast cultures.

Results

A technical solution for the required miniaturized valve and sensor implementation for an MTP-based μRAMOS device is presented. A microfluidic cover contains in total 96 pneumatic valves and 48 optical fibers, providing two valves and one optical fiber for each well. To reduce costs, an optical multiplexer for eight oxygen measuring instruments and 48 optical fibers is introduced. This configuration still provides a reasonable number of measurements per time and well. The well-to-well deviation is investigated by 48 identical Escherichia coli cultivations showing standard deviations comparable to those of the shake flask RAMOS system. The yeast Hansenula polymorpha and parsley suspension culture were also investigated.

Conclusions

The introduced MTP-based μRAMOS device enables a sound and well resolved OTR monitoring for fast- and slow-growing organisms. It offers a quality similar to standard RAMOS in OTR determination combined with an easier handling. The experimental throughput is increased 6-fold and the media consumption per cultivation is decreased roughly 12.5-fold compared to the established eight shake flask RAMOS device.
  相似文献   

5.
When Azotobacter vinelandii is grown under nitrogen-fixing conditions, the mean cell volume fluctuates from 2.7 to 6.6 microns 3 as determined using a Coulter counter. When NH4Cl is supplied as nitrogen source, the mean cell volume fluctuates from 4.6 to 7.4 microns3. Parallel experiments using flow cytometric measurements show similar characteristic fluctuations in the narrow forward angle light scattering signal and also in cellular protein content as determined using fluorescein isothiocyanate (FITC) fluorescence. Fluctuations in the perpendicular light scatter signal during batch growth are similar for both sets of growth conditions. Changes in cell morphology and ultrastructure are also similar for both sets of growth conditions, as demonstrated by electron microscopic examination. We conclude that narrow forward angle light scatter is a close correlate of cell size, whereas right angle scatter is an indicator of morphological variations other than size.  相似文献   

6.
Changes in the light scattering signal from single giant axons of lobster were observed during the propagation of the action potential in order to correlate membrane excitability with possible structural changes reflected in the optical properties of the axolemma. Substitution of guanidine and aminoguanidine for sodium resulted in a decreased action potential amplitude to 69 and 50% of control values, respectively. The amplitude of the light signal was, however, not significantly changed by these substitutions and is, therefore, reported to be independent of the transmembrane potential and current. The venom of the scorpion Leiurus quinquestriatus caused a marked prolongation of the action potential and the light scattering signal without significantly altering their amplitudes. A two-state model of the early (sodium) activation channel is suggested, in which the light scattering signal is correlated with a possible difference in the scattering efficiency between the states of the channel.  相似文献   

7.
Detailed in this study are the results of fluorometric assays used to assess the impact of gradual nutrient limitation versus punctuated nitrate limitation on the lipid content and morphology of Neochloris oleoabundans cells in batch culture. Punctuated nitrate limitation was imposed during pre‐log, log, late‐log, stationary, and senescent growth phases, and the cells were analyzed by bulk fluorescence emission, flow cytometry, and hyperspectral fluorescence imaging. In addition to intrinsic spectroscopic signatures provided by scatter and endogenous fluorescence, Nile Red staining was employed to monitor relative changes in lipid concentration. Analysis of the fluorescence images and temporal data sets was performed using multivariate curve resolution and fitting to logistic growth models to extract parameters of interest. The spectral components independently isolated from the image and temporal data sets showed close agreement with one another, especially relating to chlorophylls and Nile Red in polar and neutral lipid fractions, respectively. The fastest accumulation and highest total neutral lipid per cell and per chlorophyll were obtained with punctuated nitrate limitation during log phase growth on day 4 of culture. The presence of unbound chlorophyll in the resulting lipid bodies supports a membrane recycling TAG accumulation mechanism mediated by chloropolast–ER lipid exchange. Furthermore, an increase in cell size, indicated by forward scatter, was also found to correlate with increased neutral lipid, providing a size selection mechanism for passive harvest of algal cells at peak lipid enrichment. Biotechnol. Bioeng. 2012; 109: 2503–2512. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The feasibility of oxygen transfer rate (OTR) measurement to non-destructively monitor plant propagation and vitality of photosynthetically active plant in vitro culture of duckweed (Wolffia australiana, Lemnaceae) was tested using Respiration Activity Monitoring System (RAMOS). As a result, OTR proofed to be a sensitive indicator for plant vitality. The culture characterization under day/night light conditions, however, revealed a complex interaction between oxygen production and consumption, rendering OTR measurement an unsuitable tool to track plant propagation. However, RAMOS was found to be a useful tool in preliminary studies for process development of photosynthetically active plant in vitro cultures.  相似文献   

9.
To overcome catabolite repression, industrial fermentation processes are usually operated in substrate-limited fed-batch mode. Therefore, the implementation of such an operating mode at small scale is crucial to maintain comparable process conditions. In this study, Bacillus licheniformis, a well-known producer of proteases, was cultivated with carbon (glucose)- and nitrogen (ammonium)-limited fed-batch conditions using the previously introduced membrane-based fed-batch shake flasks. A repression of protease production by glucose and ammonium was thus avoided and yields increased 1.5- and 2.1-fold relative to batch, respectively. An elevated feeding rate of glucose caused depletion of ammonium, which was recognizable within the oxygen transfer rate (OTR) signal measured with the Respiration Activity MOnitoring System (RAMOS). Ammonium limitation was prevented by feeding ammonium simultaneously with glucose. The OTR signal clearly indicated the initiation of the fed-batch phase and gave direct feedback on the nutrient release kinetics. Increased feeding rates of glucose and ammonium led to an elevated protease activity without affecting the protease yield (YP/Glu). In addition to YP/Glu, protease yields were determined based on the metabolized amount of oxygen . The results showed that the protease production correlated with the amount of consumed glucose as well as with the amount of consumed oxygen. The membrane-based fed-batch shake flask in combination with the RAMOS device is a powerful combination to investigate the effect of substrate-limited fed-batch conditions.  相似文献   

10.
Respiration measurement is applied as a universal tool to determine the activity of biological systems. The measurement techniques are difficult to compare, due to the vast variety of devices and analytical procedures commonly in use. They are used in fields as different as microbiology, gene engineering, toxicology, and industrial process monitoring to observe the physiological activity of living systems in environments as diverse as fermenters, shake flasks, lakes and sewage plants. A method is introduced to determine accuracy, quantitation limit, range and precision of different respiration measurement devices. Corynebacterium glutamicum cultures were used to compare an exhaust gas analyzer (EGA), a RAMOS device (respiration measurement in shake flasks) and a respirometer. With all measuring devices it was possible to determine the general culture characteristics. The EGA and the RAMOS device produced almost identical results. The scatter of the respirometer was noticeably higher. The EGA is the technique of choice, if the reaction volume is high or a short reaction time is required. The possibility to monitor cultures simultaneously makes the RAMOS device an indispensable tool for media and strain development. If online monitoring is not compulsive, the respiration of the investigated microbial system extremely low, or the sample size small, a respirometer is recommended.  相似文献   

11.
An optical forward‐scatter model was generalized to encompass the diverse nature of bacterial colony morphologies and the spectral information. According to the model, the colony shape and the wavelength of incident light significantly affect the characteristics of a forward elastic‐light‐scattering pattern. To study the relationship between the colony morphology and the scattering pattern, three‐dimensional colony models were generated in various morphologies. The propagation of light passing through the colony model was then simulated. In validation of the theoretical modeling, the scattering patterns of three bacterial genera, Staphylococcus, Exiguobacterium and Bacillus, which grow into colonies having convex, crateriform and flat elevations, respectively, were qualitatively compared to the simulated scattering patterns. The strong correlations observed between simulated and experimental patterns validated the scatter model. In addition, spectral effect on the scattering pattern was studied using the scatter model, and experimentally investigated using Staphylococcus, whose colony has circular form and convex elevation. Both simulation and experiment showed that changes in wavelength affected the overall pattern size and the number of rings.  相似文献   

12.
The biochemical basis for variations in the critical nitrogen‐to‐phosphorus (N:P) ratio, which defines the transition between N‐ and P‐limitation of growth rate, is currently not well understood. To assess this issue, we cultured the cryptophyte Rhinomonas reticulata NOVARINO in chemostats with inflow nitrate‐to‐phosphate ratios ranging from 5 to 60 mol N·(mol P)?1 at two light intensities. The nitrate‐to‐phosphate ratio marking the transition between N‐ and P‐limitation was independent of light intensity and was between 30 and 45 mol N/mol P. In N‐limited cells, the particulate N:P ratio was stable at around 23 mol N/mol P over a range of inflow nitrate‐to‐phosphate from 5 to 30, whereas in P‐limited cells this ratio was around 90 mol N/mol P at inflow nitrate‐to‐phosphate ratios of 45 and 60. Cell phosphorus decreased with increasing nitrate‐to‐phosphate ratio up to the critical nitrate‐to‐phosphate ratio for each light intensity, above which they remained stable. The C:P of R. reticulata cells increased with increasing inflow nitrate‐to‐phosphate from around the Redfield value (106 mol C/mol P) to around 700. There was a significant effect of light on C:P in the N‐ limited cells, with higher C:P under high light conditions that was not observed in the P‐limited chemostats. Cellular RNA was not influenced by light but was greatly influenced by the type of nutrient limitation. In contrast, chl a, C, N, and protein were not influenced by the nitrate‐to‐phosphate in the inflow medium. Total protein per RNA was independent of light intensity but exhibited a maximum at inflow nitrate‐to‐phosphate of 30. Our results suggest a strong “two‐level” homeostatic mechanism of cellular N and P content in R. reticulata with two distinct states that are determined by the type of nutrient limitation and not by light.  相似文献   

13.
提出了一种基于共振瑞利散射(RRS)原理测量人体血清蛋白的新方法。在缓冲溶液的作用下,把配制好的人体血清蛋白稀释液按比例与四羧基酞菁锌混合,经过化学作用后在波长为400 nm左右蓝色波段强光照射下,散射出480 nm左右的共振瑞利散射光强信号。考察在不同pH对共振瑞利散射光强信号与混合物中的血清蛋白反应线性关系的影响。结果表明,pH在6.0~8.0范围内混合溶液共振瑞利散射光强信号与血清蛋白的线性关系良好。  相似文献   

14.
Laboratory experiments were performed with the prymnesiophyte Emiliania huxleyi (Lohm.) Hay and Mohler, strain 88E, to quantify calcification per cell, coccolith detachment, and effects of coccolith production on optical scattering of individual cells. 14C incorporation into attached and detached coccoliths was measured using a bulk filtration technique. 14C-labeled cells also were sorted using a flow cytometer and analyzed for carbon incorporation into attached coccoliths. The difference between the bulk and flow cytometer analyses provided a 14C-based estimate of the rate of production of detached coccoliths. Coccolith production and detachment were separated in time in batch cultures, with most detachment happening well after calcification had stopped. Accumulation of coccoliths was maximum at the end of logarithmic growth with 50–80 coccoliths per cell (three to five complete layers of coccoliths around the cells). Net accretion rates of coccoliths were on the order of 7 coccoliths· cell?1·d?1 while net detachment rates were as high as 15 coccoliths· cell?1·d?1 for stationary phase cells. Equal numbers of coccoliths were attached and detached early in logarithmic growth, and as cells aged, the numbers of detached coccoliths exceeded the attached ones by a factor of 6. Our results demonstrate pronounced charges of forward angle light scatter and 90° light scatter of cells as they grow logarithmically and enter stationary phase. Counts of loose coccoliths in batch cultures are consistent with the detachment of coccoliths in layers rather than individual coccoliths.  相似文献   

15.
The physiological responses of xylose-grown Debaryomyces hansenii were studied under different nutritive stress conditions using continuous cultivation at a constant dilution rate of 0.055 h−1. Metabolic steady-state data were obtained for xylose, ammonium, potassium, phosphate and oxygen limitation. For xylose and potassium limitation, fully oxidative metabolism occurred leading to the production of biomass and CO2 as the only metabolic products. However, potassium-limiting cultivation was the most severe nutritional stress of all tested, exhibiting the highest xylose and O2 specific consumption rates along with the lowest biomass yield, 0.22 g g−1 xylose. It is suggested that carbon was mainly channelled to meet the cellular energy requirements for potassium uptake. For the other limiting nutritional conditions increasing amounts of extracellular xylitol were found for ammonium, phosphate and oxygen limitation. Although xylitol excretion is not significant for ammonium limitation, the same is not true for phosphate limitation where the xylitol productivity reached 0.10 g l−1 h−1, about half of that found under oxygen-limiting conditions, 0.21 g l−1 h−1. This work is the first evidence that xylitol production by D. hansenii might not only be a consequence of a redox imbalance usually attained under semi-aerobic conditions, but additional physiological mechanisms must be involved, especially under phosphate limitation. Cell yields changed drastically as a function of the limiting nutrient, being 0.22, 0.29, and 0.39 g g−1 xylose for potassium, oxygen and phosphate limitation, respectively, and are a good indicator of the severity of nutritive stress.  相似文献   

16.
We investigated the relationship between daily growth rates and diel variation of carbon (C) metabolism and C to nitrogen (N) ratio under P‐ and N‐limitation in the green algae Chlorella autotrophica. To do this, continuous cultures of C. autotrophica were maintained in a cyclostat culture system under 14:10 light:dark cycle over a series of P‐ and N‐limited growth rates. Cell abundance, together with cell size, as reflected by side scatter signal from flow cytometric analysis demonstrated a synchronized diel pattern with cell division occurring at night. Under either type of nutrient limitation, the cellular C:N ratio increased through the light period and decreased through the dark period over all growth rates, indicating a higher diel variation of C metabolism than that of N. Daily average cellular C:N ratios were higher at lower dilution rates under both types of nutrient limitation but cell enlargement was only observed at lower dilution rates under P‐limitation. Carbon specific growth rates during the dark period positively correlated with cellular daily growth rates (dilution rates), with net loss of C during night at the lowest growth rates under N‐limitation. Under P‐limitation, dark C specific growth rates were close to zero at low dilution rates but also exhibited an increasing trend at high dilution rates. In general, diel variations of cellular C:N were low when dark C specific growth rates were high. This result indicated that the fast growing cells performed dark C assimilation at high rates, hence diminished the uncoupling of C and N metabolism at night.  相似文献   

17.
Production of coccoliths by cells of Emiliania huxleyi (Lohmann) Hay and Mohler was measured during exposure of the cells to two diel light-dark cycles (16:8 h). During the light period about eight coccoliths per cell were formed at a constant rate of one coccolith per 2 h. Cells divided during the first half of the dark period. No coccolith production took place during the dark period. With electron microscopy we found early-stage, coccolith-production compartments in cells after mitosis while still in the dark. No calcification was observed in these compartments. Cells grown on enriched seawater (Eppley's medium) tended to produce enough coccoliths to cover the cell in a single layer. When these cells reached the stationary phase coccolith production stopped. Coccolith production was induced by removal of extracellular coccoliths. Cells grown on medium containing 2% of the nitrate and phosphate of Eppley's medium tended to produce coccoliths in the stationary phase. This resulted in the formation of multiple layers of coccoliths. The multiple covering was restored after decalcification of stationary cells. Formation of multiple layers of coccoliths may help the cells reach deeper, nutrient-rich water by increasing the sinking rate of the cells.  相似文献   

18.
Light scattering from chicken red blood cells has been used as a model system to identify the asymmetry of cells. The histogram for forward angle light scattering for these cells is bimodal, the signal size being dependent on the cell orientation. A dual orthogonal scatter system is used to conclusively demonstrate this orientational variation in signal. A third scattering system, using a single incident beam with two orthogonal detectors, is used to further characterize the orientational variation of the scatter signal. In this third system it is shown that the signal in a detector set 90 degrees from the incident beam collects light reflected from the cell surface. The optical selection of cells in specific orientations using these systems may circumvent the need to physically orient cell in flow systems.  相似文献   

19.
20.
We report improved release of recombinant proteins in Escherichia coli, which relies on combined cellular autolysis and DNA/RNA autohydrolysis, conferred by the tightly controlled autoinduction of both phage lysozyme and the nonspecific DNA/RNA endonuclease from Serratia marcescens. Autoinduction occurs in a two-stage process wherein heterologous protein expression and autolysis enzymes are induced upon entry into stationary phase by phosphate depletion. Cytoplasmic lysozyme and periplasmic endonuclease are kept from inducing lysis until membrane integrity is disrupted. After cell harvest, the addition of detergent (0.1% Triton X-100) and a single 30 min freeze-thaw cycle results in >90% release of protein, green fluorescent protein. This cellular lysis is accompanied by complete oligonucleotide hydrolysis. The approach has been validated for shake flask cultures, high-throughput cultivation in microtiter plates, and larger scale stirred-tank bioreactors. This tightly controlled system enables robust growth and resistance to lysis in routine media when cells are propagated and autolysis/hydrolysis genes are only induced upon phosphate depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号