首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The oviducts of Locusta migratoria are innervated by a pair of nerves which arise from, the seventh abdominal ganglion. A distinctive network of striated muscle fibres occurs in the oviducts. The lateral oviducts and common oviduct consist of an inner circular layer of muscle and an outer longitudinal layer of muscle. At the junction of the lateral and common oviduct an additional thin longitudinal layer is found adjacent to the basement epithelium. The oviducts contracted spontaneously when isolated from the central nervous system. These myogenic contractions took the form of peristaltic contractions in the lateral oviduct, and intermittent phasic-like contractions of the posterior regions of the lateral oviduct and the common oviduct. These phasic-like contractions were associated with individual complex potentials recorded extracellularly from the muscle fibres. In locusts that had been interrupted in the process of egg laying, there were large-amplitude action potentials, firing in a bursting pattern, in the oviducal nerves. These large action potentials were absent in locusts that had not been egg-laying. These action potentials were associated with both bioelectric potentials and mechanical events in the posterior region of the lateral oviduct and the common oviduct. Electrical stimulation of the oviducal nerve mimicked the effects of spontaneous action potentials, resulting in the appearance of monophasic potentials and contractions. The contractions were graded and dependent upon both frequency and duration of stimulation. It is concluded that the oviducts of Locusta are both myogenic and neurogenic. The role of these contractions in oviposition is discussed.  相似文献   

2.
Cyclic patterns of motor neuron activity are involved in the production of many rhythmic movements, such as walking, swimming, and scratching. These movements are controlled by neural circuits referred to as central pattern generators (CPGs). Some of these circuits function in the absence of both internal pacemakers and external feedback. We describe an associative neural network model whose dynamic behavior is similar to that of CPGs. The theory predicts the strength of all possible connections between pairs of neurons on the basis of the outputs of the CPG. It also allows the mean operating levels of the neurons to be deduced from the measured synaptic strengths between the pairs of neurons. We apply our theory to the CPG controlling escape swimming in the mollusk Tritonia diomedea. The basic rhythmic behavior is shown to be consistent with a simplified model that approximates neurons as threshold units and slow synaptic responses as elementary time delays. The model we describe may have relevance to other fixed action behaviors, as well as to the learning, recall, and recognition of temporally ordered information.  相似文献   

3.
The effects of the amines 5HT and octopamine on the myogenic activity of Periplaneta americana (L.) oviducts and the pharmacological profile of octopamine and 5HT receptors on the lateral oviducts have been determined. Application of 5HT to the oviducts resulted in a dose-dependent increase in basal tonus and amplitude of contractions. Antagonist studies revealed that the 5HT receptor on the cockroach oviduct most resembles the mammalian 5HT2 receptor. Application of octopamine resulted in a decrease in basal tonus and had a biphasic effect on the amplitude of contractions, being stimulatory at low doses and inhibitory at higher ones. The inhibitory effects of octopamine appear to be mediated via cAMP and are blocked by antagonists which indicate that the octopamine receptor is of the octopamine-2 type. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Summary The presence of a SchistoFLRFamide-like peptide associated with the oviducts of Locusta migratoria has been shown using sequential reversed-phase high performance liquid chromatography separation coupled with radioimmunoassay and bioassay. The peptide is present in areas of the oviduct which receive extensive innervation, with sixfold less peptide in areas that receive little innervation. Material with FMRFamide-like immunoreactivity (determined by radioimmunoassay) is also present in the oviducal nerve and VIIth abdominal ganglion.SchistoFLRFamide is a potent modulator of contraction of this visceral muscle, inhibiting or reducing the amplitude and frequency of spontaneous contractions, relaxing basal tonus, and reducing the amplitude of neurally-evoked, proctolin-induced, glutamate-induced and high potassium-induced contractions. The FMRFamide-like immunoreactivity within the oviducts which co-elutes with SchistoFLRFamide on two separations is also capable of reducing the amplitude of neurally-evoked and proctolin-induced contractions, and of inhibiting spontaneous contractions and relaxing basal tonus.The effects of SchistoFLRFamide upon this visceral muscle are not abolished by the -adrenergic receptor antagonist phentolamine and do not appear to be mediated by cyclic AMP. Thus the receptors for Schisto-FLRFamide are distinct from those of octopamine which mediate similar physiological effects but which are blocked by phentolamine and which are coupled to adenylate cyclase.The results indicate that SchistoFLRFamide, or a very similar peptide, which has previously been identified as a modulator of locust heart beat, is also associated with visceral muscle of the reproductive system, and may play a neural role in concert with octopamine, at modulating muscular activity.Abbreviations BPP Bovine pancreatic polypeptide - BSA Bovine serum albumin - EJP Excitatory junctional potential - FaRPs FMRFamide-related peptides - FLI FMRFamide-like immuno-reactivity - LMS Leucomyosuppressin - RIA Radioimmunoassay - RP-HPLC Reversed-phase high performance liquid chromatography - TFA Trifluoroacetic acid  相似文献   

5.
Animals produce a variety of behaviors using a limited number of muscles and motor neurons. Rhythmic behaviors are often generated in basic form by networks of neurons within the central nervous system, or central pattern generators (CPGs). It is known from several invertebrates that different rhythmic behaviors involving the same muscles and motor neurons can be generated by a single CPG, multiple separate CPGs, or partly overlapping CPGs. Much less is known about how vertebrates generate multiple, rhythmic behaviors involving the same muscles. The spinal cord of limbed vertebrates contains CPGs for locomotion and multiple forms of scratching. We investigated the extent of sharing of CPGs for hind limb locomotion and for scratching. We used the spinal cord of adult red-eared turtles. Animals were immobilized to remove movement-related sensory feedback and were spinally transected to remove input from the brain. We took two approaches. First, we monitored individual spinal cord interneurons (i.e., neurons that are in between sensory neurons and motor neurons) during generation of each kind of rhythmic output of motor neurons (i.e., each motor pattern). Many spinal cord interneurons were rhythmically activated during the motor patterns for forward swimming and all three forms of scratching. Some of these scratch/swim interneurons had physiological and morphological properties consistent with their playing a role in the generation of motor patterns for all of these rhythmic behaviors. Other spinal cord interneurons, however, were rhythmically activated during scratching motor patterns but inhibited during swimming motor patterns. Thus, locomotion and scratching may be generated by partly shared spinal cord CPGs. Second, we delivered swim-evoking and scratch-evoking stimuli simultaneously and monitored the resulting motor patterns. Simultaneous stimulation could cause interactions of scratch inputs with subthreshold swim inputs to produce normal swimming, acceleration of the swimming rhythm, scratch-swim hybrid cycles, or complete cessation of the rhythm. The type of effect obtained depended on the level of swim-evoking stimulation. These effects suggest that swim-evoking and scratch-evoking inputs can interact strongly in the spinal cord to modify the rhythm and pattern of motor output. Collectively, the single-neuron recordings and the results of simultaneous stimulation suggest that important elements of the generation of rhythms and patterns are shared between locomotion and scratching in limbed vertebrates.  相似文献   

6.
Neuropeptides provide functional flexibility to microcircuits, their inputs and effectors by modulating presynaptic and postsynaptic properties and intrinsic currents. Recent studies have relied less on applied neuropeptide and more on their neural release. In rhythmically active microcircuits (central pattern generators, CPGs), recent studies show that neuropeptide modulation can enable particular activity patterns by organizing specific circuit motifs. Neuropeptides can also modify microcircuit output indirectly, by modulating circuit inputs. Recently elucidated consequences of neuropeptide modulation include changes in motor patterns and behavior, stabilization of rhythmic motor patterns and changes in CPG sensitivity to sensory input. One aspect of neuropeptide modulation that remains enigmatic is the presence of multiple peptide family members in the same nervous system and even the same neurons.  相似文献   

7.
Neuronal circuits underlying rhythmic behaviors (central pattern generators: CPGs) can generate rhythmic motor output without sensory input. However, sensory input is pivotal for generating behaviorally relevant CPG output. Here we discuss recent work in the decapod crustacean stomatogastric nervous system (STNS) identifying cellular and synaptic mechanisms whereby sensory inputs select particular motor outputs from CPG circuits. This includes several examples in which sensory neurons regulate the impact of descending projection neurons on CPG circuits. This level of analysis is possible in the STNS due to the relatively unique access to identified circuit, projection, and sensory neurons. These studies are also revealing additional degrees of freedom in sensorimotor integration that underlie the extensive flexibility intrinsic to rhythmic motor systems.  相似文献   

8.
Evidence for octopaminergic modulation of an insect visceral muscle   总被引:4,自引:0,他引:4  
Two dorsal unpaired median neurons (DUMOV1 and DUMOV2) lying in the posterior region of the VIIth abdominal ganglion of Locusta migratoria have axons which project to the muscles of the oviducts. This study reports the presence of octopamine within isolated DUMOV cell bodies, as well as in the oviducal nerve and innervated oviducal muscle. Individual cell bodies were pooled and found to contain about 0.34 pmol of octopamine per cell body giving an approximate value of 1.27 mM octopamine. Octopamine is concentrated within the area of oviducal muscle which receives DUMOV axons. Pharmacological studies reveal that the amplitude of neurally-evoked contractions of the oviducal muscle is reduced in a dose-dependent manner by octopamine, with threshold lying between 5 X 10(-10) M and 7 X 10(-9) M. The receptors for this response show a specificity for octopamine and synephrine, with an order of potency being octopamine = synephrine greater than metanephrine greater than tyramine greater than dopamine. The presence of octopamine throughout this neural pathway, coupled with the demonstration of octopaminergic modulation of muscular contraction, supports the hypothesis that octopamine serves a physiological role in this visceral system.  相似文献   

9.
The insect repellent DEET (0.1% concentration), used as a mosquito oviposition deterrent in the laboratory, influenced the retention and maintenance of mature eggs by caged gravid female Aedes albopictus Skuse. This egg-retention mechanism could benefit survival because the gravid females were ultimately able to lay maintained eggs upon availability of water, but the length of forced egg-retention time reduced the number of eggs laid per female. Gravid females with retained eggs also laid a higher percentage of eggs that failed to tan, and this percentage increased with time duration of egg-retention. Percent egg hatch was not significantly affected by DEET when used as an oviposition deterrent; however, percent hatch was affected by time duration of egg-retention in both treated (exposed to DEET) and untreated (control) gravid females. The rate of egg hatch was considerably reduced after three weeks of retention; this reduction declined to zero for treated and control females at six and four weeks post-treatment, respectively. The fecundity and fertility of gravid female Ae. albopictus were affected by the time duration of forced egg-retention.  相似文献   

10.
Cobalt backfilling, Lucifer yellow injection and neurophysiological recordings have been used to identify the neurons, in particular dorsal unpaired median neurons, which contribute axons to the oviducal muscles of the locust Locusta migratoria. A total of eight neurons within the VIIth abdominal ganglion have axons passing to the oviducts. Three pairs of bilaterally symmetrical neurons have ventrally located cell bodies. One neuron from each pair projects to the left side of the oviducts and the other the right side of the oviducts. These cells lie ipsilateral to the nerve root through which they exit. The neuropilar branches are intraganglionic and lie mainly in the ipsilateral neuropile, however one of the neurons from each side possesses a giant process, reaching 10 micron in diameter, which passes dorsally to the contralateral side of the ganglion. The other two neurons are dorsal unpaired median neurons, and have large cell bodies which lie at the posterior end of the ganglion. Lucifer yellow injection into these two dorsal unpaired median neurons reveals a single neurite passing anteriorly from the cell body which bifurcates into two bilaterally symmetrical processes which exit to the oviducts through both the left and right sternal roots. Similar to other identified dorsal unpaired median neurons, the cell bodies stain with neutral red and can support overshooting action potentials. The possibility that these two cells contain octopamine is discussed.  相似文献   

11.
Vertebrate spinal cord and brainstem central pattern generator (CPG) circuits share profound similarities with neocortical circuits. CPGs can produce meaningful functional output in the absence of sensory inputs. Neocortical circuits could be considered analogous to CPGs as they have rich spontaneous dynamics that, similar to CPGs, are powerfully modulated or engaged by sensory inputs, but can also generate output in their absence. We find compelling evidence for this argument at the anatomical, biophysical, developmental, dynamic and pathological levels of analysis. Although it is possible that cortical circuits are particularly plastic types of CPG ('learning CPGs'), we argue that present knowledge about CPGs is likely to foretell the basic principles of the organization and dynamic function of cortical circuits.  相似文献   

12.
Like in all poikilothermic animals, higher temperatures increase developmental rate and activity in Calliphora vicina larvae. We therefore could expect temperature to have a persistent effect on the output of the feeding and crawling central pattern generators (CPGs). When confronted with a steep temperature gradient, larvae show evasive behavior after touching the substrate with the cephalic sense organs. Beside this reflex behavior the terminal- and dorsal organ might also mediate long term CPG modulation. Both organs were thermally stimulated while their response was recorded from the maxillary- or antennal nerve. The terminal organ showed a tonic response characteristic while the dorsal organ was not sensitive to temperature. Thermal stimulation of the terminal organ did not affect the ongoing patterns of fictive feeding or crawling, recorded from the antennal- or abdominal nerve respectively. A selective increase of the central nervous system (CNS) temperature accelerated the motor patterns of both feeding and crawling. We propose that temperature affects centrally generated behavior via two pathways: short term changes like thermotaxis are mediated by the terminal organ, while long term adaptations like increased feeding rate are caused by temperature sensitive neurons in the CNS which were recently shown to exist in Drosophila larvae.  相似文献   

13.
Motor systems can be functionally organized into effector organs (muscles and glands), the motor neurons, central pattern generators (CPG) and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS) that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM) ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ). Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC) only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system.  相似文献   

14.
1. We have identified a class of nonspiking interneurons which can control the frequency of ventilation in a graded manner. These frequency modulating interneurons (FMis) also receive synaptic inputs in-phase with the ventilatory motor output providing a functional positive feedback loop in the ventilatory system. The class of FMis is composed of three morphologically and physiologically distinct interneurons, FMi1, FMi2 and FMi3. 2. Depolarization of FMi1 increases the rate of ventilation, while hyperpolarization decreases the rate (Fig. 1). This control is restricted to a single ventilatory central pattern generator (CPG), (Fig. 2), although FMi1 sends processes into the neuropils of both hemiganglionic CPGs (Fig. 3). 3. Hyperpolarization of FMi2 increases the rate of both ventilatory CPGs while depolarization of this cell slows and eventually arrests the rhythm (Figs. 5 and 6). FMi2 receives a synaptic input correlated with the motor output of each of the ventilatory CPGs (Fig. 4). During periods of reversed ventilation, this cell is abruptly hyperpolarized and continues to be driven in-phase with the ventilatory motor output (Fig. 7). 4. Hyperpolarization of FMi3 increases the rate of ventilation and depolarization decreases the rate of ventilation produced by both CPGs (Fig. 10). This control of the ventilatory rate by FMi3 is graded (Fig. 11). There is no apparent change in the membrane potential of FMi3 during reversed ventilation and it is morphologically distinct from FMi2. 5. FMi2 and FMi3 may be involved in the switch in ventilatory motor pattern from forward to reversed ventilation. Hyperpolarization of FMi2 and depolarization of FMi3 can elicit bouts of reversed ventilation from both CPGs (Fig. 13). 6. These results suggest that the FM interneurons act in parallel to control the frequency of ventilation and may act as integrating elements between spiking 'command' fibers in the circumesophageal connectives and the nonspiking interneurons of the ventilatory CPG.  相似文献   

15.
Oviductal contractions and the control of oviposition were investigated in vivo and in vitro in Gryllus bimaculatus females. In vivo experiments showed that oviposition is controlled nervously by both the brain and the last abdominal ganglion, and that one or more neurohormones cause ovipositor movements and abdominal contractions. In vitro, the assay of nerve ganglia and corpora cardiaca extracts on the isolated oviduct showed that they markedly increase the frequency of oviductal contractions. However, the action of thoracic ganglia extracts varies according to a circadian cycle. This observation, combined with the finding that the effects of the corpora cardiaca differ from those of the brain, suggests that each of these organs contains distinct neurohormones. None of the neurotransmitters tested was as potent as brain or ganglia extracts, although octopamine, l-glutamate and proctolin do stimulate oviductal contractions at low concentrations.  相似文献   

16.
Neuromodulators orchestrate complex behavioral routines by their multiple and combined effects on the nervous system. In the desert locust, Schistocerca gregaria, frontal ganglion neurons innervate foregut dilator muscles and play a key role in the control of foregut motor patterns. To further investigate the role of the frontal ganglion in locust behavior, we currently focus on the frontal ganglion central pattern generator as a target for neuromodulation. Application of octopamine, a well-studied insect neuromodulator, generated reversible disruption of frontal ganglion rhythmic activity. The threshold for the modulatory effects of octopamine was 10–6 mol l–1, and 10–4 mol l–1 always abolished the ongoing rhythm. In contrast to this straightforward modulation, allatostatin, previously reported to be a myoinhibitor of insect gut muscles, showed complex, tri-modal, dose-dependent effects on frontal ganglion rhythmic pattern. Using a novel cross-correlation analysis technique, we show that different allatostatin concentrations have very different effects not only on cycle period but also on temporal characteristics of the rhythmic bursts of action potentials. Allatostatin also altered the frontal ganglion rhythm in vivo. The analysis technique we introduce may be instrumental in the study of not fully characterized neural circuits and their modulation. The physiological significance of our results and the role of the modulators in locust behavior are discussed.Abbreviation CPG central pattern generator - FG frontal ganglion - JH juvenile hormone - STNS stomatogastric nervous system  相似文献   

17.
Oscillating neuronal circuits, known as central pattern generators (CPGs), are responsible for generating rhythmic behaviours such as walking, breathing and chewing. The CPG model alone however does not account for the ability of animals to adapt their future behaviour to changes in the sensory environment that signal reward. Here, using multi-electrode array (MEA) recording in an established experimental model of centrally generated rhythmic behaviour we show that the feeding CPG of Lymnaea stagnalis is itself associated with another, and hitherto unidentified, oscillating neuronal population. This extra-CPG oscillator is characterised by high population-wide activity alternating with population-wide quiescence. During the quiescent periods the CPG is refractory to activation by food-associated stimuli. Furthermore, the duration of the refractory period predicts the timing of the next activation of the CPG, which may be minutes into the future. Rewarding food stimuli and dopamine accelerate the frequency of the extra-CPG oscillator and reduce the duration of its quiescent periods. These findings indicate that dopamine adapts future feeding behaviour to the availability of food by significantly reducing the refractory period of the brain's feeding circuitry.  相似文献   

18.
Animal locomotion requires highly coordinated working of the segmental neuronal networks that control the limb movements. Experiments have shown that sensory signals originating from the extremities play a pivotal role in controlling locomotion patterns by acting on central networks. Based on the results from stick insect locomotion, we constructed an inter-segmental model comprising local networks for all three legs, i.e. for the pro-, meso- and meta-thorax, their inter-connections and the main sensory inputs modifying their activities. In the model, the local networks are uniform, and each of them consists of a central pattern generator (CPG) providing the rhythmic oscillation for the protractor-retractor motor systems, the corresponding motoneurons (MNs), and local inhibitory interneurons (IINs) between the CPGs and the MNs. Between segments, the CPGs are connected cyclically by both excitatory and inhibitory pathways that are modulated by the aforementioned sensory inputs. Simulations done with our network model showed that it was capable of reproducing basic patterns of locomotion such as those occurring during tri- and tetrapod gaits. The model further revealed a number of elementary neuronal processes (e.g. synaptic inhibition, or changing the synaptic drive at specific neurons) that in the simulations were necessary, and in their entirety sufficient, to bring about a transition from one type of gait to another. The main result of this simulation study is that exactly the same mechanism underlies the transition between the two types of gait irrespective of the direction of the change. Moreover, the model suggests that the majority of these processes can be attributed to direct sensory influences, and changes are required only in centrally controlled synaptic drives to the CPGs.  相似文献   

19.
Summary The basic rhythmicity underlying animal locomotion is created by dedicated neural structures called central pattern generators (CPGs). We describe the implementation of such structures in simulation and their successful use for the control of bipedal walking. Artificial evolution (in the form of genetic algorithms) is used as the optimisation procedure. Two CPG types are illustrated, the more advanced of which being based on recent theoretical findings on the nature of neural architectures required to drive animal locomotion. It is shown that CPGs in conjunction with simple reflex responses as well as an appropriate mechanical implementation of the biped are capable of producing stable walking patterns on planar surfaces. This finding corroborates circumstantial experimental evidence that limited bipedal locomotion is possible without the employment of higher level control centres.  相似文献   

20.
The biogenic amine, octopamine, modulates a variety of aspects of insect motor behavior, including direct action on the flight central pattern generator. A number of recent studies demonstrate that tyramine, the biological precursor of octopamine, also affects invertebrate locomotor behaviors, including insect flight. However, it is not clear whether the central pattern generating networks are directly affected by both amines, octopamine and tyramine. In this study, we tested whether tyramine affected the central pattern generator for flight in the moth, Manduca sexta. Fictive flight was induced in an isolated ventral nerve cord preparation by bath application of the octopamine agonist, chlordimeform, to test potential effects of tyramine on the flight central pattern generator by pharmacological manipulations. The results demonstrate that octopamine but not tyramine is sufficient to induce fictive flight in the isolated ventral nerve cord. During chlordimeform induced fictive flight, bath application of tyramine selectively increases synaptic drive to depressor motoneurons, increases the number of depressor spikes during each cycle and decreases the depressor phase. Conversely, blocking tyramine receptors selectively reduces depressor motoneuron activity, but does not affect cycle by cycle elevator motoneuron spiking. Therefore, octopamine and tyramine exert distinct effects on the flight central pattern generating network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号