首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously identified a multisubunit complex (CENP-H/I complex) in kinetochores from human and chicken cells. We showed that the CENP-H/I complex is divided into three functional classes. In the present study, we investigated CENP-O class proteins, which include CENP-O, -P, -Q, -R, and -50 (U). We created chicken DT40 cell knockouts of each of these proteins, and we found that all knockout lines were viable, but that they showed slow proliferation and mitotic defects. Kinetochore localization of CENP-O, -P, -Q, and -50 was interdependent, but kinetochore localization of these proteins was observed in CENP-R-deficient cells. A coexpression assay in bacteria showed that CENP-O, -P, -Q, and -50 proteins form a stable complex that can associate with CENP-R. Phenotype analysis of knockout cells showed that all proteins except for CENP-R were required for recovery from spindle damage, and phosphorylation of CENP-50 was essential for recovery from spindle damage. We also found that treatment with the proteasome inhibitor MG132 partially rescued the severe mitotic phenotype observed in response to release from nocodazole block in CENP-50-deficient cells. This suggests that CENP-O class proteins are involved in the prevention of premature sister chromatid separation during recovery from spindle damage.  相似文献   

2.
3.
The cell cycle of Caulobacter crescentus is controlled by a complex signalling network that co‐ordinates events. Genome sequencing has revealed many C. crescentus cell cycle genes are conserved in other Alphaproteobacteria, but it is not clear to what extent their function is conserved. As many cell cycle regulatory genes are essential in C. crescentus, the essential genes of two Alphaproteobacteria, Agrobacterium tumefaciens (Rhizobiales) and Brevundimonas subvibrioides (Caulobacterales), were elucidated to identify changes in cell cycle protein function over different phylogenetic distances as demonstrated by changes in essentiality. The results show the majority of conserved essential genes are involved in critical cell cycle processes. Changes in component essentiality reflect major changes in lifestyle, such as divisome components in A. tumefaciens resulting from that organism's different growth pattern. Larger variability of essentiality was observed in cell cycle regulators, suggesting regulatory mechanisms are more customizable than the processes they regulate. Examples include variability in the essentiality of divJ and divK spatial cell cycle regulators, and non‐essentiality of the highly conserved and usually essential DNA methyltransferase CcrM. These results show that while essential cell functions are conserved across varying genetic distance, much of a given organism's essential gene pool is specific to that organism.  相似文献   

4.
Yeast xrs2 binds DNA and helps target rad50 and mre11 to DNA ends   总被引:1,自引:0,他引:1  
Saccharomyces cerevisiae Rad50, Mre11, and Xrs2 proteins are involved in homologous recombination, non-homologous end-joining, DNA damage checkpoint signaling, and telomere maintenance. These proteins form a stable complex that has nuclease, DNA binding, and DNA end recognition activities. Of the components of the Rad50.Mre11.Xrs2 complex, Xrs2 is the least characterized. The available evidence is consistent with the idea that Xrs2 recruits other protein factors in reactions that pertain to the biological functions of the Rad50.Mre11.Xrs2 complex. Here we present biochemical evidence that Xrs2 has an associated DNA-binding activity that is specific for DNA structures. We also define the contributions of Xrs2 to the activities of the Rad50.Mre11.Xrs2 complex. Importantly, we demonstrate that Xrs2 is critical for targeting of Rad50 and Mre11 to DNA ends. Thus, Xrs2 likely plays a direct role in the engagement of DNA substrates by the Rad50. Mre11.Xrs2 complex in various biological processes.  相似文献   

5.
α3β1 integrin has been considered to be a mysterious adhesion molecule due to the pleiotropy in its ligand-binding specificity. However, recent studies have identified laminin isoforms as high-affinity ligands for this integrin, and demonstrated that α3β1 integrin plays a number of essential roles in development and differentiation, mainly by mediating the establishment and maintenance of epithelial tissues. Furthermore, α3β1 integrin is also implicated in many other biological phenomena, including cell growth and apoptosis, angiogenesis and neural functions. This integrin receptor forms complexes with various other membrane proteins, such as the transmembrane-4 superfamily proteins (tetraspanins), cytoskeletal proteins and signaling molecules. Recently, lines of evidence have been reported showing that complex formation regulates integrin functions in cell adhesion and migration, signal transduction across cell membranes, and cytoskeletal organization. In addition to these roles in physiological processes, α3β1 integrin performs crucial functions in various pathological processes, especially in wound healing, tumor invasion and metastasis, and infection by pathogenic microorganisms.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

6.
Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large‐scale sequencing efforts. Using genome‐scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co‐culture competition assays to generate a high‐confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non‐isogenic cancer cell lines. For example, the PTEN?/? DiE genes reveal a signature that can preferentially classify PTEN‐dependent genotypes across a series of non‐isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model.  相似文献   

7.
Tumor-derived mutant KRAS (v-Ki-ras-2 Kirsten rat sarcoma viral oncogene) oncoprotein is a critical driver of cancer phenotypes and a potential biomarker for many epithelial cancers. Targeted mass spectrometry analysis by multiple reaction monitoring (MRM) enables selective detection and quantitation of wild-type and mutant KRAS proteins in complex biological samples. A recently described immunoprecipitation approach (Proc. Nat. Acad. Sci.2011, 108, 2444-2449) can be used to enrich KRAS for MRM analysis, but requires large protein inputs (2-4 mg). Here, we describe sodium dodecyl sulfate-polyacrylamide gel electrophoresis-based enrichment of KRAS in a low molecular weight (20-25 kDa) protein fraction prior to MRM analysis (GeLC-MRM). This approach reduces background proteome complexity, thus, allowing mutant KRAS to be reliably quantified in low protein inputs (5-50 μg). GeLC-MRM detected KRAS mutant variants (G12D, G13D, G12V, G12S) in a panel of cancer cell lines. GeLC-MRM analysis of wild-type and mutant was linear with respect to protein input and showed low variability across process replicates (CV = 14%). Concomitant analysis of a peptide from the highly similar HRAS and NRAS proteins enabled correction of KRAS-targeted measurements for contributions from these other proteins. KRAS peptides were also quantified in fluid from benign pancreatic cysts and pancreatic cancers at concentrations from 0.08 to 1.1 fmol/μg protein. GeLC-MRM provides a robust, sensitive approach to quantitation of mutant proteins in complex biological samples.  相似文献   

8.
The budding yeast Saccharomyces cerevisiae has been used extensively for the study of cell polarity, owing to both its experimental tractability and the high conservation of cell polarity and other basic biological processes among eukaryotes. The budding yeast has also served as a pioneer model organism for virtually all genome-scale approaches, including functional genomics, which aims to define gene function and biological pathways systematically through the analysis of high-throughput experimental data. Here, we outline the contributions of functional genomics and high-throughput methodologies to the study of cell polarity in the budding yeast. We integrate data from published genetic screens that use a variety of functional genomics approaches to query different aspects of polarity. Our integrated dataset is enriched for polarity processes, as well as some processes that are not intrinsically linked to cell polarity, and may provide new areas for future study.  相似文献   

9.
How is actin polymerization nucleated in vivo?   总被引:13,自引:0,他引:13  
Actin polymerization in vivo is dependent on free barbed ends that act as nuclei. Free barbed ends can arise in vivo by nucleation from the Arp2/3 complex, uncapping of barbed ends on pre-existing filaments or severing of filaments by cofilin. There is evidence that each mechanism operates in cells. However, different cell types use different combinations of these processes to generate barbed ends during stimulated cell motility. Here, I describe recent attempts to define the relative contributions of these three mechanisms to actin nucleation in vivo. The rapid increase in the number of barbed ends during stimulation is not due to any single mechanism. Cooperation between capping proteins, cofilin and the Arp2/3 complex is necessary for the development of protrusive force at the leading edge of the cell: uncapping and cofilin severing contributing barbed ends, whereas activity of the Arp2/3 complex is necessary, but not sufficient, for lamellipod extension. These results highlight the need for new methods that enable the direct observation of actin nucleation and so define precisely the relative contributions of the three processes to stimulated cell motility.  相似文献   

10.
Chen JG  Gao Y  Jones AM 《Plant physiology》2006,141(3):887-897
Signaling through heterotrimeric G proteins is conserved in diverse eukaryotes. Compared to vertebrates, the simpler repertoire of G-protein complex and accessory components in Arabidopsis (Arabidopsis thaliana) offers a unique advantage over all other multicellular, genetic-model systems for dissecting the mechanism of G-protein signal transduction. One of several biological processes that the G-protein complex regulates in Arabidopsis is cell division. We determined cell production rate in the primary root and the formation of lateral roots in Arabidopsis to define individually the types of modulatory roles of the respective G-protein alpha- and beta-subunits, as well as the heterotrimer in cell division. The growth rate of the root is in part a consequence of cell cycle maintenance in the root apical meristem (RAM), while lateral root production requires meristem formation by founder pericycle cells. Thus, a comparison of these two parameters in various genetic backgrounds enabled dissection of the role of the G-protein subunits in modulation of cell division, both in maintenance and initiation. Cell production rates were determined for the RAM and lateral root formation in gpa1 (Arabidopsis G-protein alpha-subunit) and agb1 (Arabidopsis G-protein beta-subunit) single and double mutants, and in transgenic lines overexpressing GPA1 or AGB1 in agb1 or gpa1 mutant backgrounds, respectively. We found in the RAM that the heterotrimeric complex acts as an attenuator of cell proliferation, whereas the GTP-bound form of the Galpha-subunit's role is a positive modulator. In contrast, for the formation of lateral roots, the Gbetagamma-dimer acts largely independently of the Galpha-subunit to attenuate cell division. These results suggest that Arabidopsis heterotrimeric G-protein subunits have differential and opposing roles in the modulation of cell division in roots.  相似文献   

11.
Efficient methods for profiling of the cell surface proteome are desirable to get a deeper insight in basic biological processes, to localise proteins and to uncover proteins differentially expressed in diseases. Here we present a strategy to target cell surface exposed proteins via fluorescence labelling using CyDye DIGE fluors. This method has been applied to human cell lines in vitro as well as to a complex biological system in vivo. It allows detection of fluorophore-tagged cell surface proteins and visualisation of the accessible proteome within a single 2-D gel, simplifying subsequent UV MALDI-MS analysis.  相似文献   

12.
All eukaryotic cells need to reorganize their actin cytoskeleton to change shape, divide, move, and take up nutrients for survival. The Wiskott-Aldrich syndrome protein (WASP) and WASP-family verprolin-homologous protein (WAVE) family proteins are fundamental actin-cytoskeleton reorganizers found throughout the eukaryotes. The conserved function across species is to receive upstream signals from Rho-family small GTPases and send them to activate the Arp2/3 complex, leading to rapid actin polymerization, which is critical for cellular processes such as endocytosis and cell motility. Molecular and cell biological studies have identified a wide array of regulatory molecules that bind to the WASP and WAVE proteins and give them diversified roles in distinct cellular locations. Genetic studies using model organisms have also improved our understanding of how the WASP- and WAVE-family proteins act to shape complex tissue architectures. Current efforts are focusing on integrating these pieces of molecular information to draw a unified picture of how the actin cytoskeleton in a single cell works dynamically to build multicellular organization.  相似文献   

13.

Background  

In order to replicate, HIV, like all viruses, needs to invade a host cell and hijack it for its own use, a process that involves multiple protein interactions between virus and host. The HIV-1, Human Protein Interaction Database available at NCBI's website captures this information from the primary literature, containing over 2,500 unique interactions. We investigate the general properties and biological context of these interactions and, thus, explore the molecular specificity of the HIV-host perturbation. In particular, we investigate (i) whether HIV preferentially interacts with highly connected and 'central' proteins, (ii) known phenotypic properties of host proteins inferred from essentiality and disease-association data, and (iii) biological context (molecular function, processes and location) of the host proteins to identify attributes most strongly associated with specific HIV interactions.  相似文献   

14.
Apicomplexans employ a peripheral membrane system called the inner membrane complex (IMC) for critical processes such as host cell invasion and daughter cell formation. We have identified a family of proteins that define novel sub-compartments of the Toxoplasma gondii IMC. These IMC Sub-compartment Proteins, ISP1, 2 and 3, are conserved throughout the Apicomplexa, but do not appear to be present outside the phylum. ISP1 localizes to the apical cap portion of the IMC, while ISP2 localizes to a central IMC region and ISP3 localizes to a central plus basal region of the complex. Targeting of all three ISPs is dependent upon N-terminal residues predicted for coordinated myristoylation and palmitoylation. Surprisingly, we show that disruption of ISP1 results in a dramatic relocalization of ISP2 and ISP3 to the apical cap. Although the N-terminal region of ISP1 is necessary and sufficient for apical cap targeting, exclusion of other family members requires the remaining C-terminal region of the protein. This gate-keeping function of ISP1 reveals an unprecedented mechanism of interactive and hierarchical targeting of proteins to establish these unique sub-compartments in the Toxoplasma IMC. Finally, we show that loss of ISP2 results in severe defects in daughter cell formation during endodyogeny, indicating a role for the ISP proteins in coordinating this unique process of Toxoplasma replication.  相似文献   

15.
16.
Multi-specific proteins located at the heart of complex protein–protein interaction (PPI) networks play essential roles in the survival and fitness of the cell. In addition, multi-specific or promiscuous enzymes exhibit activity toward a wide range of substrates so as to increase cell evolvability and robustness. However, despite their high importance, investigating the in vivo function of these proteins is difficult, due to their complex nature. Typically, deletion of these proteins leads to the abolishment of large PPI networks, highlighting the difficulty in examining the contributions of specific interactions/activities to complex biological processes and cell phenotypes. Protein engineering approaches, including directed evolution and computational protein design, allow for the generation of multi-specific proteins in which certain activities remain intact while others are abolished. The generation and examination of these mutants both in vitro and in vivo can provide high-resolution analysis of biological processes and cell phenotypes and provide new insight into the evolution and molecular function of this important protein family.  相似文献   

17.
18.
Lipid rafts are specialized cholesterol-enriched microdomains in the cell membrane. They have been known as a platform for protein-protein interactions and to take part in multiple biological processes. Nevertheless, how lipid rafts influence protein properties at the proteomic level is still an open question for researchers using traditional biochemical approaches. Here, by annotating the lipid raft localization of proteins in human protein-protein interaction networks, we performed a systematic analysis of the function of proteins related to lipid rafts. Our results demonstrated that lipid raft proteins and their interactions were critical for the structure and stability of the whole network, and that the interactions between them were significantly enriched. Furthermore, for each protein in the network, we calculated its “lipid raft dependency (LRD),” which indicates how close it is topologically associated with lipid rafts, and we then uncovered the connection between LRD and protein functions. Proteins with high LRD tended to be essential for mammalian development, and malfunction of these proteins was inclined to cause human diseases. Coordinated with their neighbors, high-LRD proteins participated in multiple biological processes and targeted many pathways in diseases pathogenesis. High-LRD proteins were also found to have tissue specificity of expression. In summary, our network-based analysis denotes that lipid raft proteins have higher centrality in the network, and that lipid-raft-related proteins have multiple functions and are probably concerned with many biological processes in disease development.  相似文献   

19.
Keunwan Park  Dongsup Kim 《Proteomics》2009,9(22):5143-5154
It has been suggested that a close relationship exists between gene essentiality and network centrality in protein–protein interaction networks. However, recent studies have reported somewhat conflicting results on this relationship. In this study, we investigated whether essential proteins could be inferred from network centrality alone. In addition, we determined which centrality measures describe the essentiality well. For this analysis, we devised new local centrality measures based on several well‐known centrality measures to more precisely describe the connection between network topology and essentiality. We examined two recent yeast protein–protein interaction networks using 40 different centrality measures. We discovered a close relationship between the path‐based localized information centrality and gene essentiality, which suggested underlying topological features that represent essentiality. We propose that two important features of the localized information centrality (proper representation of environmental complexity and the consideration of local sub‐networks) are the key factors that reveal essentiality. In addition, a random forest classifier showed reasonable performance at classifying essential proteins. Finally, the results of clustering analysis using centrality measures indicate that some network clusters are closely related with both particular biological processes and essentiality, suggesting that functionally related proteins tend to share similar network properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号