首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mechanistic understanding of perchlorate () entry into plants is important for establishing the human health risk associated with consumption of contaminated produce and for assessing the effectiveness of phytoremediation. To determine whether common soil anions affect uptake and accumulation in higher plants, a series of competition experiments using lettuce (Lactuca sativa L.) were conducted between (50 nM) and (4–12 mM), (1–10 mM), or Cl (5–15 mM) in hydroponic solution. The effects of (0–5 mM) and pH (5.5–7.5) on uptake were also examined. Increasing in solution significantly reduced the amount of taken up by green leaf, butter head, and crisphead lettuces. Sulfate and Cl had no significant effects on uptake in lettuce over the concentrations tested. Increasing pH significantly reduced the amount of taken up by crisphead and green leaf lettuces, whereas increasing significantly reduced uptake in butter head lettuce. The inhibition by across all lettuce genotypes suggests that may share an ion carrier with , and the decrease in uptake with increasing pH or provides macroscopic evidence for cotransport across the plasma membrane.  相似文献   

2.
Surface free energy (SFE; γ SV) of 16 fruit epicarps present on the Chilean market was calculated by two approaches: the acid–base and Zisman. The results show that the fruit epicarps were low surface energy since the magnitude of γ SV falls within a narrow range, between 37 and 44 mJ m − 2. Zisman approach gave a critical surface tension values, γ cr lower than the SFE calculated by the acid–base approach. Significant differences in SFE between the fruits may be explained by the variation in the chemical composition of epicuticular waxes. The polar (gABSV\gamma^{\rm AB}_{\rm SV}) and apolar (gLWSV\gamma^{\rm LW}_{\rm SV}) components of the SFE were also calculated and a mathematical relation was between both values was found. Values of gABSV\gamma^{\rm AB}_{\rm SV} and gLWSV\gamma^{\rm LW}_{\rm SV} could also be associated with the fruit family and the tissue origins in the ovary region. Finally, it has been shown that fruit epicarps exhibited predominantly electron-donator behaviour since $\gamma_{\rm SV}^- > \gamma_{\rm SV}^+$\gamma_{\rm SV}^- > \gamma_{\rm SV}^+. We believe that the results reported here can potentially impact in food engineering because the compatibility of coatings and fruit epicarps depends on the interaction of their respective chemical and physical properties.  相似文献   

3.
Arsenite (As(III)) is the predominant arsenic (As) species in reducing environments. As(III) is less strongly adsorbed than As(V) at circumneutral pH conditions by common non‐iron metal oxides in sediments such as those of aluminum. Therefore, oxidation of As(III) to As(V) could contribute to an improved immobilization of As and thus help mitigate As contamination in groundwater. Microbial oxidation of As(III) is known to readily under aerobic conditions, however, the dissolved oxygen (O2) concentration in groundwater may be limited due to the poor solubility of O2 and its high chemical reactivity with reduced compounds. Nitrate (${\rm NO}_{3}^{{-} } $ ), can be considered as an alternative electron acceptor, which can support oxidation of As(III) to As(V) by denitrifying bacteria. In this study, two up‐flow sediment columns packed with activated alumina (AA) were utilized to demonstrate the role of denitrification on the oxidation of As(III) to As(V) and its contribution to improved As adsorption onto AA. One column was supplied with ${\rm NO}_{3}^{{-} } $ (C1) and its performance was compared with a control column lacking ${\rm NO}_{3}^{{-} } $ (C2). During most of the operation when the pH was in the circumneutral range (days 50–250), the release of arsenic was greater from C2 compared to C1. The effluent As concentrations started increasing on days 60 and 100 in C2 and C1, respectively. Complete breakthrough started on day 200 in C2; whereas in C1, complete breakthrough was never achieved. The effluent and solid phase As speciation was dominated by As(V) in C1, indicating the occurrence of As(III) oxidation due to ${\rm NO}_{3}^{{-} } $ ; whereas in C2, only As(III) was dominant. This study illustrates a bioremediation or natural attenuation process based on anoxic microbial ${\rm NO}_{3}^{{-} } $ ‐dependent oxidation of As(III) to more readily adsorbed As(V) as a means to enhance the immobilization of As on alumina oxide particles in subsurface environments. Biotechnol. Bioeng. 2010;107: 786–794. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for nucleic acids. The experiments are demonstrated for C–C moieties of the third IgG-binding domain from Streptococcal Protein G (GB3) and for C –C groups in a 24-nt RNA oligomer. Chemical shifts of C, C and H (respectively C , C and H ) are dispersed in the three orthogonal dimensions, and the absence of heteronuclear decoupling leads to distinct and well-resolved E.COSY multiplet patterns. In an isotropic sample, the E.COSY displacements correspond to 1JCH, 2JCH2+2JCH3, 2JCH, 1JCH2+1JCH3, 1JCH22JH2H3, 1JCH32JH2H3, 3JHH2 and 3JHH3 for proteins, and 1J , 2J J , 2J , 1J +1J , 1J J , 1J J , 3J and 3J in nucleic acids. The experiment, based on relaxation-optimized spectroscopy, yields best results when applied to residues where the methine–methylene group corresponds to a reasonably isolated spin system, as applies for C, F, Y, W, D, N and H residues in proteins, or the C –C groups in nucleic acids. Splittings can be measured under either isotropic or weakly aligned conditions, yielding valuable structural information both through the 3J couplings and the one-, two- and three-bond dipolar interactions. Dipolar couplings for 10 out of 13 sidechains in GB3 are found to be in excellent agreement with its X-ray structure, whereas one residue adopts a different backbone geometry, and two residues are subject to extensive 1 rotamer averaging. The abundance of dipolar couplings can also yield stereospecific assignments of the non-equivalent methylene protons. For the RNA oligomer, dipolar data yielded stereospecific assignments for six out of the eight C H2 groups in the loop region of the oligomer, in all cases confirmed by 1J ^{1} $$" align="middle" border="0"> J , and H resonating downfield of H .Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-005-0175-z.  相似文献   

5.
The characteristics of the formation of the superoxide radical anion (\(\rm{O}_2^{\bullet-}\)) and hydrogen peroxide by xanthine oxidases isolated from microorganisms and from cow’s milk were investigated. The increase in pH led to an increase in the rate of xanthine oxidation with oxygen by both xanthine oxidases. The functioning of xanthine oxidase from milk along with the two-electron reduction of O2 to H2O2 carries through the one-electron reduction of O2 to \(\rm{O}_2^{\bullet-}\), and the rate and the fraction of generation of \(\rm{O}_2^{\bullet-}\) increased with increasing pH. Under operation of the microbial xanthine oxidase, the \(\rm{O}_2^{\bullet-}\) radical was not detected in the medium. The results suggest a difference in the operation of active centers of enzyme from different sources.  相似文献   

6.
Biocycling of sulfur (S) has been proposed to play an important role in the recovery of ecosystems following anthropogenic S deposition. Here, we investigated the importance of the humus layer in the biocycling of S in three forested catchments in the Gårdsjön area of southwestern Sweden with differing S inputs and S isotope signature values. These experimental sites consisted of two reference catchments and the Gårdsjön roof experiment catchment (G1), where anthropogenic deposition was intercepted from 1991 until May 2002 by a roof placed over the entire catchment area. Under the roof, controlled levels of deposition were applied, using a sprinkler system, and the only form of S added was marine SO42− with a δ of +19.5‰.We installed ion exchange resin bags at the interface between the humus layer and mineral soil at each of the catchments to collect SO42− passing through the humus. The resin bags were installed on four occasions, in 1999 and 2000, covering two summer and two winter periods. The ions collected by each bag during these sampling periods were then eluted and their δ values and SO42− concentrations determined. The most striking result is that the average δ value in the resin bags was more than 12‰ lower compared to that of the sprinkler water in the G1 roof catchment. There was no increasing trend in the isotope value in the resin bag SO42− despite that the roof treatment has been on-going for almost 10 years; the average value for all resin bags was +7.1‰. The highest δ values found in the G1 roof catchment were between +11‰ and +12‰. However, these values were all obtained from resin bags installed at a single sampling location. Throughfall and resin bag δ values were more similar in the two reference catchments: about +7.5‰ in both cases. There was, however, an increase in resin bag δ values during the first winter period, from about +7‰ to +9‰. The resin bag δ value was linearly and positively related (r2 = 0.26, p < 0.001) to the amount of SO42− extracted from the resin bags, if relatively high amounts (>50 mmol m−2) were excluded. High amounts of resin bag SO42− seemed to be related to groundwater inputs, as indicated by the δ value. Our results suggest that rapid immobilization of SO42− into a large organic S pool may alter the S isotope value and affect the δ values measured in the mineral soil and runoff.  相似文献   

7.
R Glasser  E J Gabbay 《Biopolymers》1968,6(2):243-254
The synthesis of spermine derivatives (II), \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm R}_1 {\rm R}_{\rm 2} {\rm R}_{\rm 3} \mathop {\rm N}\limits^ + \left( {{\rm CH}_2 } \right)_3 \mathop {\rm N}\limits^ + {\rm R}_{\rm 1} {\rm R}_{\rm 2} \left( {{\rm CH}_2 } \right)_2 ]_2 \cdot 4{\rm X}^ - $\end{document}, and spermidine derivatives (III), \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm R}_1 {\rm R}_{\rm 2} {\rm R}_{\rm 3} \mathop {\rm N}\limits^ + \left( {{\rm CH}_2 } \right)_4 \mathop {\rm N}\limits^ + {\rm R}_{\rm 1} {\rm R}_{\rm 2} \left( {{\rm CH}_2 } \right)_3 \mathop {\rm N}\limits^ + {\rm R}_{\rm 1} {\rm R}_{\rm 2} {\rm R}_3 \cdot 3{\rm X}^ - $\end{document}, are reported. The effects of these salts on the helix–coil transition of rA–rU and rI–rC helices were examined. Increasing the size of the hydrophobic substituents, R1, R2, and R3 lowers the degree of stabilization of the helical structure. The disproportionation reaction, 2rA–rU→rA–rU2 + rA occurs readily with salts II and III, especially when the substituents, R1, R2, and R3 are small, i.e., H or Me. Spermine is found to stabilize the rA–rU2 and rI–rC helices to approximately the same extent; however, large differences between the degree of stabilization of rA–rU2 and rI-rC helices are observed when the substituents R1, R2, and R3 are large hydrophobic groups. Similar results are also obtained for the spermidine series. Finally, differences in the interactions of the salts II and III with rA–rU2 and rI–rC helices suggest that the latter helix is denser.  相似文献   

8.
Pan BS  Wolyniak CJ  Brenna JT 《Amino acids》2007,33(4):631-638
Summary. Presented here is the first experimental evidence that natural, intramolecular, isotope ratios are sensitive to physiological status, based on observations of intramolecular δ15N of lysine in the mitochondrial mimic Paracoccus denitrificans. Paracoccus denitrificans, a versatile, gram-negative bacterium, was grown either aerobically or anaerobically on isotopically-characterized ammonium as sole cell-nitrogen source. Nitrogen isotope composition of the biomass with respect to source ammonium was = −6.2 ± 1.2‰ for whole cells under aerobic respiration, whereas cells grown anaerobically produced no net fractionation ( = −0.3 ± 0.23‰). Fractionation of 15N between protein nitrogen and total cell nitrogen increased during anaerobic respiration and suggests that residual nitrogen-containing compounds in bacterial cell membranes are isotopically lighter under anaerobic respiration. In aerobic cells, the lysine intramolecular difference between peptide and sidechain nitrogen is negligible, but in anaerobic cells was a remarkable Δ15Np − s = δ15Npeptide − δ15Nsidechain = +11.0‰, driven predominantly by enrichment at the peptide N. Consideration of known lysine pathways suggests this to be likely due to enhanced synthesis of peptidoglycans in the anaerobic state. These data indicate that distinct pathway branching ratios associated with microbial respiration can be detected by natural intramolecular Δδ15N measurements, and are the first in vivo observations of position-specific measurements of nitrogen isotope fractionation.  相似文献   

9.
Hairy root cultures of Gentiana macrophylla were established by infecting the different explants four Agrobacterium rhizogenes strains namely A4GUS, R1000, LBA 9402 and ATCC11325, and hairy root lines were established with A. rhizogenes strain R1000 in 1/2 MS + B5 medium. Initially, 42 independent hairy root clones were maintained and seven clones belongs to different category were evaluated for growth, morphology, integration and expression of Ri T-DNA genes, and alkaloid contents in dry root samples. On the basis of total root elongation, lateral root density and biomass accumulation on solid media, hairy root clones were separated into three categories. PCR and Southern hybridization analysis revealed both left and right T-DNA integration in the root clones and RT-PCR analysis confirmed the expression of hairy root inducible gene. GUS assay was also performed to confirm the integration of left T-DNA. The accumulation of considerable amounts of the root-specific secoiridoid glucosides gentiopicroside was observed in GM1 ( and ) and the GM2 ( and DNA) type clones in considerably higher amount whether as two but callus-type clones (GM3) accumulated much less or only very negligible amounts of gentiopicroside. Out of four media composition the 1/2 MS + B5 vitamin media was found most suitable. We found that initial establishment of root cultures largely depends on root:media ratio. Maximum growth rate was recorded in 1:50 root:media ratio. The maximum biomass in terms of fresh weight (33-fold) was achieved in 1/2 MS + B5 media composition after 35 days in comparison to sixfold increase in control. The biomass increase was most abundant maximum from 15 to 30 days. Influence of A. rhizogenes strains and Ri plasmid of hairy root induction, the possible role of the TL-DNA and TR-DNA genes on growth pattern of hairy root, initial root inoculum:media ratio and effect of media composition is discussed.  相似文献   

10.
Formate and phosphate affect substantially the rate of tyrosine D (TyrD) oxidation and the stability of the radical Tyr in Photosystem II [Hienerwadel R, Boussac A, Breton J and Berthomieu C (1996) Biochemistry 35: 15447–15460]. This observation prompted us to analyze the influence of formate and phosphate on the environment of TyrD using FTIR spectroscopy. The ν (CO) IR mode of Tyr at 1503 cm−1 remains unchanged whatever the buffer used at pH 6 and whether formate is present or not in the sample. Similarly, the main IR mode of reduced TyrD remains at ≈1250 cm−1 in all tested conditions. We thus conclude that formate does not modify the hydrogen-bonded interactions of TyrD and Tyr with neighbouring D2His189 and D2Gln164. In the TyrD-state, an IR mode of formate significantly different from that observed in solution, is detected using 13C-formate, showing that formate forms a strong electrostatic interaction within PS II. The presence of formate affects also IR bands that may be assigned to an arginine side chain. Upon Tyr formation, formate does not protonate but its binding interaction weakens. A proton uptake by Mes or phosphate buffer is detected, which is not observed when BisTris is used as a buffer. In these latter conditions, IR bands characteristic of the protonation of a carboxylate group of the protein are detected instead. The present IR data and the recent structural model of the TyrD environment proposed by Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S [(2004) Science 303: 1831–1838], suggest that the proton released upon Tyr formation is shared within a hydrogen bonding network including D2Arg294, and CP47Glu364 and that perturbation of this network by formate – possibly binding near D2Arg294 – substantially affects the properties of TyrD.  相似文献   

11.
Possible routes for the evolution of cell energetics are considered. It is assumed that u.v. light was the primary energy source for the precursors of the primordial living cell and that primitive energetics might have been based on the use of the adenine moiety of ADP as the u.v. chromophore. It is proposed that the excitation of the adenine residue facilitated phosphorylation of its amino group with subsequent transfer of a phosphoryl group to the terminal phosphate of ADP to form ATP. ATP-driven carbohydrate synthesis is considered as a mechanism for storing u.v.-derived energy, which was then used in the dark. Glycolysis presumably produced compounds like ethanol and CO2 which easily penetrate the membrane and therefore were lost by the cell. Later lactate-producing glycolysis appeared, the end product being non-penetrant and, hence, retained inside the cell to be utilized to regenerate carboxydrates when light energy became available. Production of lactate was accompanied by accumulation of equimolar H+. To avoid acidification of the cell interior, an F0-type H+ channel was employed. Later it was supplemented with F1. This allowed the ATP energy to be used for uphill H+ pumping to the medium, which was acidified due to glycolytic activity of the cells.In the subsequent course of evolution, u.v. light was replaced by visible light, which has lower energy but is less dangerous for the cell. It is assumed that bacteriorhodopsin, a simple and very stable light-driven H+ pump which still exists in halophilic and thermophilic Archaea, was the primary system utilizing visible light. The formed was used to reverse the H+-ATPase, which began to function as H+-ATP-synthase. Later, bacteriorhodopsin photosynthesis was substituted by a more efficient chlorophyll photosynthesis, producing not only ATP, but also carbohydrates. O2, a side product of this process, was consumed by the H+-motive respiratory chain to form in the dark. At the next stage of evolution, a parallel energy-transducing mechanism appeared which employed Na+ instead of H+ as the coupling ion (the Na+ cycle). As a result, the bioenergetic system became more stable under unfavorable conditions. Apparently, the latest inventions of evolution of biological energy transducers are those which can utilize and outside the coupling membrane, like the bacterial flagellar motor and the TonB-mediated uphill transport of solutes across the outer membrane of bacteria.  相似文献   

12.
Bubble gas samples were collected at three different vegetation sites and two different depths (surface and 40 cm) in a natural wetland, Mizorogaike in Kyoto city, to investigate hydrogen concentration and δD and δ13C values of CH4. Hydrogen concentration in bubble gas varied from 1 to 205 ppm, and that collected during summer was higher than that during winter. Bubble samples collected at 40 cm at sphagnum site usually showed the lowest H2 concentration among the samples collected at the three sites and two depths on the same day. The lowest H2 concentration observed at 40 cm at sphagnum site was similar to that expected for environmental water in which H2 producer and consumer need to assemble for free energy requirement. Low δ13C and high δD (relatively small hydrogen fractionation; ‰) were observed in CH4 collected at a deeper (40 cm) layer of sphagnum site during winter, when H2 concentration was low (typically 2–4 ppm). On the other hand, CH4 in the bubble samples collected during summer showed high δ13C and low δD (relatively large hydrogen fractionation; ‰), when H2 concentration was high. Carbon and hydrogen isotope fractionation during CH4 production were variable, possibly depending on the H2 concentration and the production rate. Difference in enzymatic reaction and magnitude of hydrogen isotope exchange among water, CH4, and H2 may cause the variation in isotope fractionation during CH4 production.  相似文献   

13.

Introduction

The Elongator complex, comprising six subunits (Elp1p-Elp6p), is required for formation of 5-carbamoylmethyl (ncm5) and 5-methoxycarbonylmethyl (mcm5) side chains on wobble uridines in 11 out of 42 tRNA species in Saccharomyces cerevisiae. Loss of these side chains reduces the efficiency of tRNA decoding during translation, resulting in pleiotropic phenotypes. Overexpression of hypomodified \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \), which in wild-type strains are modified with mcm5s2U, partially suppress phenotypes of an elp3Δ strain.

Objectives

To identify metabolic alterations in an elp3Δ strain and elucidate whether these metabolic alterations are suppressed by overexpression of hypomodified \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \).

Method

Metabolic profiles were obtained using untargeted GC-TOF-MS of a temperature-sensitive elp3Δ strain carrying either an empty low-copy vector, an empty high-copy vector, a low-copy vector harboring the wild-type ELP3 gene, or a high-copy vector overexpressing \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \). The temperature sensitive elp3Δ strain derivatives were cultivated at permissive (30 °C) or semi-permissive (34 °C) growth conditions.

Results

Culturing an elp3Δ strain at 30 or 34 °C resulted in altered metabolism of 36 and 46 %, respectively, of all metabolites detected when compared to an elp3Δ strain carrying the wild-type ELP3 gene. Overexpression of hypomodified \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \) suppressed a subset of the metabolic alterations observed in the elp3Δ strain.

Conclusion

Our results suggest that the presence of ncm5- and mcm5-side chains on wobble uridines in tRNA are important for metabolic homeostasis.
  相似文献   

14.
A novel NMR pulse sequence is introduced to determine the glycosidic torsion angle χ in 13C,15N-labeled oligonucleotides. The quantitative Γ-HCNCH measures the dipolar cross-correlated relaxation rates (pyrimidines) and (purines). Cross-correlated relaxation rates of a 13C,15N-labeled RNA 14mer containing a cUUCGg tetraloop were determined and yielded χ-angles that agreed remarkably well with data derived from the X-ray structure of the tetraloop. In addition, the method was applied to the larger stemloop D (SLD) subdomain of the Coxsackievirus B3 cloverleaf 30mer RNA and the effect of anisotropic rotational motion was examined for this molecule. It could be shown that the χ-angle determination especially for nucleotides in the anti conformation was very accurate and the method was ideally suited to distinguish between the syn and the anti-conformation of all four types of nucleotides. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
As a result of increased anthropogenic nitrogen (N) loading in surface waters of agricultural watersheds, there is enhanced interest to understand and quantify N removal mechanisms. Denitrification, an important N removal mechanism in aquatic systems, may contribute to reducing N pollution in agricultural headwater streams. However, the key factors controlling this process in lotic systems remain unclear. The objective of our study was to examine the factors regulating rates of denitrification in the sediments of agricultural headwater streams in the mid-western USA. Denitrification rates were variable among streams and treatments (<0.1–28.0 μg N g AFDM−1 h−1) and on average, were higher than those reported for similar headwater streams. Carbon quantity and quality, and pH had no effect on denitrification, while temperature and nitrate ( ) concentrations had a positive effect on rates of denitrification. Specifically, controlled denitrification following Michaelis-Menten kinetics. We calculated a value of km (1.0 mg -N L-1) that was comparable to other studies in aquatic sediments but was well below the median in-stream concentrations (5.2–17.4 mg -N L−1) observed at the study sites. Despite high rates of denitrification, this removal mechanism is most likely saturated in the agricultural headwater streams we examined, suggesting that these systems are not effective at removing in-stream N. Handling editor: D. Ryder  相似文献   

16.
As an efficient and cost-effective nitrogen removal process, anaerobic ammonium oxidation (ANAMMOX) could be well operated at suitable pH condition. However, pH shock occurred in different kinds of wastewater and affected ANANNOX process greatly. The present research aimed at studying the performance and kinetics of ANAMMOX granular sludge with pH shock. When influent pH was below 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with decreasing pH. At Ph 6.0, effluent \({\text{NO}}_{2}^{ - }\)–N approached 100 mg/L, and the ratios of \(\Delta {\text{NO}}_{2}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N and }}\Delta {\text{NO}}_{3}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N}}\) approached 2.2 and 1.3, respectively. Both greatly deviated from theoretical values. When influent pH was above 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with increasing pH. At pH 9.0, ammonium removal rate (ARR) and nitrite removal rate (NRR) decreased to 0.011 ± 0.004 and 0.035 ± 0.004 kg/(m3·d), respectively. Besides, \(\Delta {\text{NO}}_{2}^{ - }\)–N:\(\Delta {\text{NH}}_{4}^{ + }\)–N deviated from theoretical value. Longer recovery time from pH 9.0 than from pH 6.0 indicated that alkaline surroundings inhibited anaerobic ammonium oxidizing bacteria (AAOB) greater. The sludge settling velocity was 2.15 cm/s at pH 7.5. However, it decreased to 2.02 cm/s when pH was 9.0. Acidic pH had little effect on sludge size, but disintegration of ANAMMOX granule was achieved with pH of 9.0. The Bell-shaped (A) model and the Ratkowsky model were more applicable to simulate the effect resulting from pH shock on ANAMMOX activity (R2 > 0.95), and both could describe ANAMMOX activity well with pH shock. They indicated that qmax was 0.37 kg \(\Delta {\text{NH}}_{4}^{ + }\)–N/(kgMLSS·d) at the optimum pH value (7.47) in present study. The minimum pH during which ANAMMOX occurred was 5.68 while the maximum pH for ANAMMOX reaction was 9.26. Based on nitrogen removal performance with different pH, strongly acidic (pH ≤ 6.5) or alkaline (pH ≥ 8.5) inhibited ANAMMOX process. Besides, ANAMMOX appeared to be more susceptible to alkaline wastewater. Compared to extremely acidic condition (low pH), extremely alkaline condition (high pH) affected ANAMMOX granules much more.  相似文献   

17.
In this paper, with the assumptions that an infectious disease in a population has a fixed latent period and the latent individuals of the population may disperse, we formulate an SIR model with a simple demographic structure for the population living in an n-patch environment (cities, towns, or countries, etc.). The model is given by a system of delay differential equations with a fixed delay accounting for the latency and a non-local term caused by the mobility of the individuals during the latent period. Assuming irreducibility of the travel matrices of the infection related classes, an expression for the basic reproduction number R0{\mathcal{R}_0} is derived, and it is shown that the disease free equilibrium is globally asymptotically stable if R0 < 1{\mathcal{R}_0 < 1} , and becomes unstable if ${\mathcal{R}_0 > 1}${\mathcal{R}_0 > 1} . In the latter case, there is at least one endemic equilibrium and the disease will be uniformly persistent. When n = 2, two special cases allowing reducible travel matrices are considered to illustrate joint impact of the disease latency and population mobility on the disease dynamics. In addition to the existence of the disease free equilibrium and interior endemic equilibrium, the existence of a boundary equilibrium and its stability are discussed for these two special cases.  相似文献   

18.
A model of the active transport of ions in the Cascinodiscus wailesii diatom cell is constructed taking into account the transport of H+, Na+, K+, Ca+2, NO3-\mathrm{NO}_{3}^{-}, Cl, and NH4+\mathrm{NH}_{4}^{+} ions. This model allows calculating intracellular concentrations of basic ions and the biomembrane resting potential. A hierarchical algorithm “one ion—one transport system” is used in the model. The dependence of the resting potential on the extracellular concentration of potassium is plotted in terms of the model. The calculated values are in good agreement with the corresponding experimental data.  相似文献   

19.
Shewanella decolorationis S12 was able to reduce various azo dyes in a defined medium with formate, lactate, and pyruvate or H2 as electron donors under anaerobic conditions. Purified membranous, periplasmic, and cytoplasmic fractions from strain S12 analyzed, respectively, only membranous fraction was capable of reducing azo dye in the presence of electron donor, indicating that the enzyme system for anaerobic azoreduction was located on cellular membrane. Respiratory inhibitor Cu2+, dicumarol, stigmatellin, and metyrapone inhibited anaerobic azoreduction by purified membrane fraction, suggesting that the bacterial anaerobic azoreduction by strain S12 was a biochemical process that oxidizes the electron donors and transfers the electrons to the acceptors through a multicompound system related to electron transport chain. Dehydrogenases, cytochromes, and menaquinones were essential electron transport components for the azoreduction. The electron transport process for azoreduction was almost fully inhibited by O2, 6 mM of , and 0.9 mM of , but not by 10 mM of Fe3+. The inhibition may be a result from the competition for electrons from electron donors. These findings impact on the understanding of the mechanism of bacterial anaerobic azoreduction and have implication for improving treatment methods of wastewater contaminated by azo dyes.  相似文献   

20.
We investigated the interaction (hyper)polarizability of neon–dihydrogen pairs by performing high-level ab initio calculations with atom/molecule-specific, purpose-oriented Gaussian basis sets. We obtained interaction-induced electric properties at the SCF, MP2, and CCSD levels of theory. At the CCSD level, for the T-shaped configuration, around the respective potential minimum of 6.437 a0, the interaction-induced mean first hyperpolarizability varies for 5?<? R/a0?<?10 as
$$ \left[{\overline{\beta}}_{\mathrm{int}}(R)\hbox{-} {\overline{\beta}}_{\mathrm{int}}\left({R}_{\mathrm{e}}\right)\right]/{e}^3{a_0}^3{E_{\mathrm{h}}}^{-2}=-0.91\left(R\hbox{-} {R}_{\mathrm{e}}\right)+0.50{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^2\hbox{--} 0.13{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^3+0.01{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^4. $$
Again, at the CCSD level, but for the L-shaped configuration around the respective potential minimum of 6.572 a0, this property varies for 5?<? R/a0?<?10 as
$$ \left[{\overline{\beta}}_{\mathrm{int}}(R)\hbox{-} {\overline{\beta}}_{\mathrm{int}}\left({R}_{\mathrm{e}}\right)\right]/{e}^3{a_0}^3{E_{\mathrm{h}}}^{-2}=-1.33\left(R\hbox{-} {R}_{\mathrm{e}}\right)+0.75{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^2-0.20{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^3+0.02{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^4. $$
Graphical Abstract Interaction-induced mean dipole polarizability (\( \overline{a} \)) for the T-shaped configuration of H2–Ne calculated at the SCF, MP2, and CCSD levels of theory
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号