首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Desmosomes provide intercellular adhesive strength required for integrity of epithelial and some non-epithelial tissues. Within the epidermis, the cadherin-type adhesion molecules desmoglein (Dsg) 1–4 and desmocollin (Dsc) 1–3 build the adhesive core of desmosomes. In keratinocytes, several isoforms of these proteins are co-expressed. However, the contribution of specific isoforms to overall cell cohesion is unclear. Therefore, in this study we investigated the roles of Dsg2 and Dsg3, the latter of which is known to be essential for keratinocyte adhesion based on its autoantibody-induced loss of function in the autoimmune blistering skin disease pemphigus vulgaris (PV). The pathogenic PV antibody AK23, targeting the Dsg3 adhesive domain, led to profound loss of cell cohesion in human keratinocytes as revealed by the dispase-based dissociation assays. In contrast, an antibody against Dsg2 had no effect on cell cohesion although the Dsg2 antibody was demonstrated to interfere with Dsg2 transinteraction by single molecule atomic force microscopy and was effective to reduce cell cohesion in intestinal epithelial Caco-2 cells which express Dsg2 as the only Dsg isoform. To substantiate these findings, siRNA-mediated silencing of Dsg2 or Dsg3 was performed in keratinocytes. In contrast to Dsg3-depleted cells, Dsg2 knockdown reduced cell cohesion only under conditions of increased shear. These experiments indicate that specific desmosomal cadherins contribute differently to keratinocyte cohesion and that Dsg2 compared to Dsg3 is less important in this context.  相似文献   

2.
Human fibrosarcoma cells, HT-1080, feature extensive adherens junctions, lack mature desmosomes, and express a single known desmosomal protein, Desmoglein 2 (Dsg2). Transfection of these cells with bovine Desmocollin 1a (Dsc1a) caused dramatic changes in the subcellular distribution of endogenous Dsg2. Both cadherins clustered in the areas of the adherens junctions, whereas only a minor portion of Dsg2 was seen in these areas in the parental cells. Deletion mapping showed that intact extracellular cadherin-like repeats of Dsc1a (Arg1-Thr170) are required for the translocation of Dsg2. Deletion of the intracellular C-domain that mediates the interaction of Dsc1a with plakoglobin, or the CSI region that is involved in the binding to desmoplakin, had no effect. Coimmunoprecipitation experiments of cell lysates stably expressing Dsc1a with anti-Dsc or -Dsg antibodies demonstrate that the desmosomal cadherins, Dsg2 and Dsc1a, are involved in a direct Ca2+-dependent interaction. This conclusion was further supported by the results of solid phase binding experiments. These showed that the Dsc1a fragment containing cadherin-like repeats 1 and 2 binds directly to the extracellular portion of Dsg in a Ca2+-dependent manner. The contribution of the Dsg/ Dsc interaction to cell–cell adhesion was tested by coculturing HT-1080 cells expressing Dsc1a with HT-1080 cells lacking Dsc but expressing myc-tagged plakoglobin (MPg). In the latter cells, MPg and the endogenous Dsg form stable complexes. The observed specific coimmunoprecipitation of MPg by anti-Dsc antibodies in coculture indicates that an intercellular interaction between Dsc1 and Dsg is involved in cell–cell adhesion.  相似文献   

3.
Intestinal epithelial intercellular junctions regulate barrier properties, and they have been linked to epithelial differentiation and programmed cell death (apoptosis). However, mechanisms regulating these processes are poorly defined. Desmosomes are critical elements of intercellular junctions; they are punctate structures made up of transmembrane desmosomal cadherins termed desmoglein-2 (Dsg2) and desmocollin-2 (Dsc2) that affiliate with the underlying intermediate filaments via linker proteins to provide mechanical strength to epithelia. In the present study, we generated an antibody, AH12.2, that recognizes Dsg2. We show that Dsg2 but not another desmosomal cadherin, Dsc2, is cleaved by cysteine proteases during the onset of intestinal epithelial cell (IEC) apoptosis. Small interfering RNA-mediated down-regulation of Dsg2 protected epithelial cells from apoptosis. Moreover, we report that a C-terminal fragment of Dsg2 regulates apoptosis and Dsg2 protein levels. Our studies highlight a novel mechanism by which Dsg2 regulates IEC apoptosis driven by cysteine proteases during physiological differentiation and inflammation.  相似文献   

4.
The desmosomal cadherins, desmogleins, and desmocollins mediate strong intercellular adhesion. Human intestinal epithelial cells express the desmoglein-2 isoform. A proteomic screen for Dsg2-associated proteins in intestinal epithelial cells identified a lectin referred to as galectin-3 (Gal3). Gal3 bound to N-linked β-galactosides in Dsg2 extracellular domain and co-sedimented with caveolin-1 in lipid rafts. Down-regulation of Gal3 protein or incubation with lactose, a galactose-containing disaccharide that competitively inhibits galectin binding to Dsg2, decreased intercellular adhesion in intestinal epithelial cells. In the absence of functional Gal3, Dsg2 protein was internalized from the plasma membrane and degraded in the proteasome. These results report a novel role of Gal3 in stabilizing a desmosomal cadherin and intercellular adhesion in intestinal epithelial cells.  相似文献   

5.
Desmoglein 1 (Dsg1) is a component of desmosomes present in the upper epidermis and can be targeted by autoimmune antibodies or bacterial toxins, resulting in skin blistering diseases. These defects in tissue integrity are believed to result from compromised desmosomal adhesion; yet, previous attempts to directly test the adhesive roles of desmosomal cadherins using normally non-adherent L cells have yielded mixed results. Here, two complementary approaches were used to better resolve the molecular determinants for Dsg1-mediated adhesion: (1) a tetracycline-inducible system was used to modulate the levels of Dsg1 expressed in L cell lines containing desmocollin 1 (Dsc1) and plakoglobin (PG) and (2) a retroviral gene delivery system was used to introduce Dsg1 into normal human epidermal keratinocytes (NHEK). By increasing Dsg1 expression relative to Dsc1 and PG, we were able to demonstrate that the ratio of Dsg1:Dsc1 is a critical determinant of desmosomal adhesion in fibroblasts. The distribution of Dsg1 was organized at areas of cell-cell contact in the multicellular aggregates that formed in these suspension cultures. Similarly, the introduction of Dsg1 into NHEKs was capable of increasing the aggregation of single cell suspensions and further enhanced the adhesive strength of intact epithelial sheets. Endogenous Dsc1 levels were also increased in NHEKs containing Dsg1, providing further support for the coordination of these two desmosomal cadherins in regulating adhesive structures. These Dsg1-mediated effects on intercellular adhesion were directly related to the presence of an intact extracellular domain as ETA, a toxin that specifically cleaves this desmosomal cadherin, inhibited adhesion in both fibroblasts and keratinocytes. Collectively, these observations demonstrate that Dsg1 promotes the formation of intercellular adhesion complexes and suggest that the relative level of Dsg and Dsc expressed at the cell surface regulates this adhesive process.  相似文献   

6.
The desmosomal cadherins, desmogleins (Dsgs) and desmocollins (Dscs), comprise the adhesive core of intercellular junctions known as desmosomes. Although these adhesion molecules are known to be critical for tissue integrity, mechanisms that coordinate their trafficking into intercellular junctions to regulate their proper ratio and distribution are unknown. We demonstrate that Dsg2 and Dsc2 both exhibit microtubule-dependent transport in epithelial cells but use distinct motors to traffic to the plasma membrane. Functional interference with kinesin-1 blocked Dsg2 transport, resulting in the assembly of Dsg2-deficient junctions with minimal impact on distribution of Dsc2 or desmosomal plaque components. In contrast, inhibiting kinesin-2 prevented Dsc2 movement and decreased its plasma membrane accumulation without affecting Dsg2 trafficking. Either kinesin-1 or -2 deficiency weakened intercellular adhesion, despite the maintenance of adherens junctions and other desmosome components at the plasma membrane. Differential regulation of desmosomal cadherin transport could provide a mechanism to tailor adhesion strength during tissue morphogenesis and remodeling.  相似文献   

7.
《Biophysical journal》2022,121(7):1322-1335
Desmoglein (Dsg) 2 is a ubiquitously expressed desmosomal cadherin. Particularly, it is present in all cell types forming desmosomes, including epithelial cells and cardiac myocytes and is upregulated in the autoimmune skin disease pemphigus. Thus, we here characterized the binding properties of Dsg2 in more detail using atomic force microscopy (AFM). Dsg2 exhibits homophilic interactions and also heterophilic interactions with the desmosomal cadherin desmocollin (Dsc) 2, and further with the classical cadherins E-cadherin (E-Cad) and N-cadherin (N-Cad), which may be relevant for cross talk between desmosomes and adherens junctions in epithelia and cardiac myocytes. We found that all homo- and heterophilic interactions were Ca2+-dependent. All binding forces observed are in the same force range, i.e., 30 to 40 pN, except for the Dsg2/E-Cad unbinding force, which with 45 pN is significantly higher. To further characterize the nature of the interactions, we used tryptophan, a critical amino acid required for trans-interaction, and a tandem peptide (TP) designed to cross-link Dsg isoforms. TP was sufficient to prevent the tryptophan-induced loss of Dsg2 interaction with the desmosomal cadherins Dsg2 and Dsc2; however, not with the classical cadherins E-Cad and N-Cad, indicating that the interaction modes of Dsg2 with desmosomal and classical cadherins differ. TP rescued the tryptophan-induced loss of Dsg2 binding on living enterocytes, suggesting that interaction with desmosomal cadherins may be more relevant. In summary, the data suggest that the ubiquitous desmosomal cadherin Dsg2 enables the cross talk with adherens junctions by interacting with multiple binding partners with implications for proper adhesive function in healthy and diseased states.  相似文献   

8.
Dsg1 (desmoglein 1) is a member of the cadherin family of Ca2+-dependent cell adhesion molecules that is first expressed in the epidermis as keratinocytes transit out of the basal layer and becomes concentrated in the uppermost cell layers of this stratified epithelium. In this study, we show that Dsg1 is not only required for maintaining epidermal tissue integrity in the superficial layers but also supports keratinocyte differentiation and suprabasal morphogenesis. Dsg1 lacking N-terminal ectodomain residues required for adhesion remained capable of promoting keratinocyte differentiation. Moreover, this capability did not depend on cytodomain interactions with the armadillo protein plakoglobin or coexpression of its companion suprabasal cadherin, Dsc1 (desmocollin 1). Instead, Dsg1 was required for suppression of epidermal growth factor receptor–Erk1/2 (extracellular signal-regulated kinase 1/2) signaling, thereby facilitating keratinocyte progression through a terminal differentiation program. In addition to serving as a rigid anchor between adjacent cells, this study implicates desmosomal cadherins as key components of a signaling axis governing epithelial morphogenesis.  相似文献   

9.
Desmocollin (Dsc) 1–3 and desmoglein (Dsg) 1–4, transmembrane proteins of the cadherin family, form the adhesive core of desmosomes. Here we provide evidence that Dsc3 homo- and heterophilic trans-interaction is crucial for epidermal integrity. Single molecule atomic force microscopy (AFM) revealed homophilic trans-interaction of Dsc3. Dsc3 displayed heterophilic interaction with Dsg1 but not with Dsg3. A monoclonal antibody targeted against the extracellular domain reduced homophilic and heterophilic binding as measured by AFM, caused intraepidermal blistering in a model of human skin, and a loss of intercellular adhesion in cultured keratinocytes. Because autoantibodies against Dsg1 are associated with skin blistering in pemphigus, we characterized the role of Dsc3 binding for pemphigus pathogenesis. In contrast to AFM experiments, laser tweezer trapping revealed that pemphigus autoantibodies reduced binding of Dsc3-coated beads to the keratinocyte cell surface. These data indicate that loss of heterophilic Dsc3/Dsg1 binding may contribute to pemphigus skin blistering.Desmogleins (Dsg)2 and desmocollins (Dsc) are members of the Ca2+-dependent cadherin family of adhesion molecules that extend with their outer domains into the extracellular core of desmosomes. Desmosomal cadherins include four Dsg (Dsg1–4) and three Dsc3 isoforms (Dsc1–3) (1, 2). Desmosomal cadherins share a common domain organization with five N-terminally located extracellular subdomains (EC1–5). The membrane-distal EC1 domain is thought to contain the adhesive interface necessary for trans-interaction as could be concluded from structural analysis and blocking studies using peptides and antibodies (35). By establishing trans- and cis-interacting adhesive complexes, desmosomal cadherins participate in providing mechanical strength to stratified epithelia (6). In human epidermis Dsg1 and Dsc1 expression decreases from the outermost granular layer toward deeper layers, whereas Dsg3 and Dsc3 are primarily found in the basal layer and display an inverse expression gradient (7, 8). In contrast to classical cadherins present in adherens junctions that primarily undergo homophilic trans-interaction, desmosomal cadherins are generally believed to mediate both homo- and heterophilic binding (9). Recently, an important role of Dsc3 for integrity of murine epidermis was demonstrated in animals with conditional epidermal Dsc3 deficiency that suffered from severe intraepidermal blister formation (10) comparable with the phenotype of the autoimmune bullous skin disease pemphigus vulgaris (PV) (11). PV is associated with antibodies (Abs) against Dsg3, in part combined with Abs targeting Dsg1, whereas Dsg1 Abs alone are associated with pemphigus foliaceus (PF). However, PV and PF sera usually do not contain autoantibodies targeting Dsc3 (12). In view of the apparently important role of Dsc3 in epidermal adhesion, we addressed whether Dsg1 and Dsg3 might heterophilically interact with Dsc3 and whether Abs in pemphigus might interfere with such type of interaction.  相似文献   

10.
Desmosomal cadherins mediate intercellular adhesion and control epithelial homeostasis. Recent studies show that proteinases play an important role in the pathobiology of cancer by targeting epithelial intercellular junction proteins such as cadherins. Here we describe the proinflammatory cytokine-induced activation of matrix metalloproteinase 9 and a disintegrin and metalloproteinase domain–containing protein 10, which promote the shedding of desmosomal cadherin desmoglein-2 (Dsg2) ectodomains in intestinal epithelial cells. Epithelial exposure to Dsg2 ectodomains compromises intercellular adhesion by promoting the relocalization of endogenous Dsg2 and E-cadherin from the plasma membrane while also promoting proliferation by activation of human epidermal growth factor receptor 2/3 signaling. Cadherin ectodomains were detected in the inflamed intestinal mucosa of mice with colitis and patients with ulcerative colitis. Taken together, our findings reveal a novel response pathway in which inflammation-induced modification of columnar epithelial cell cadherins decreases intercellular adhesion while enhancing cellular proliferation, which may serve as a compensatory mechanism to promote repair.  相似文献   

11.
Desmosomal cadherins are transmembrane adhesion molecules that provide cell adhesion by interacting in the intercellular space of adjacent cells. In keratinocytes, several desmoglein (Dsg1–4) and desmocollin (Dsc1–3) isoforms are coexpressed. We have shown previously that Dsg2 is less important for keratinocyte cohesion compared with Dsg3 and that the latter forms a complex with p38 MAPK. In this study, we compared the involvement of Dsg2 and Dsg3 in the p38 MAPK-dependent regulation of keratinocyte cohesion. We show that loss of cell adhesion and keratin filament retraction induced by Dsg3 depletion is ameliorated by specific p38 MAPK inhibition. Furthermore, in contrast to depletion of Dsg2, siRNA-mediated silencing of Dsg3 induced p38 MAPK activation, which is in line with immunoprecipitation experiments demonstrating the interaction of activated p38 MAPK with Dsg3 but not with Dsg2. Cell fractionation into a cytoskeleton-unbound and a cytoskeleton-anchored desmosome-containing pool revealed that Dsg3, in contrast to Dsg2, is present in relevant amounts in the unbound pool in which activated p38 MAPK is predominantly detectable. Moreover, because loss of cell adhesion by Dsg3 depletion was partially rescued by p38 MAPK inhibition, we conclude that, besides its function as an adhesion molecule, Dsg3 is strengthening cell cohesion via modulation of p38 MAPK-dependent keratin filament reorganization. Nevertheless, because subsequent targeting of Dsg3 in Dsg2-depleted cells led to drastically enhanced keratinocyte dissociation and Dsg2 was enhanced at the membrane in Dsg3 knockout cells, we conclude that Dsg2 compensates for Dsg3 loss of function.  相似文献   

12.
Desmosomes and adherens junctions are cadherin-based protein complexes responsible for cell-cell adhesion of epithelial cells. Type 1 cadherins of adherens junctions show specific homophilic adhesion that plays a major role in developmental tissue segregation. The desmosomal cadherins, desmocollin and desmoglein, occur as several different isoforms with overlapping expression in some tissues where different isoforms are located in the same desmosomes. Although adhesive binding of desmosomal cadherins has been investigated in a variety of ways, their interaction in desmosome-forming epithelial cells has not been studied. Here, using extracellular homobifunctional cross-linking, we provide evidence for homophilic and isoform-specific binding between the Dsc2, Dsc3, Dsg2, and Dsg3 isoforms in HaCaT keratinocytes and show that it represents trans interaction. Furthermore, the cross-linked adducts are present in the detergent-insoluble fraction, and electron microscopy shows that extracellular cross-linking probably occurs in desmosomes. We found no evidence for either heterophilic or cis interaction, but neither can be completely excluded by our data. Mutation of amino acid residues Trp-2 and Ala-80 that are important for trans interaction in classical cadherin adhesive binding abolished Dsc2 binding, indicating that these residues are also involved in desmosomal adhesion. These interactions of desmosomal cadherins may be of key importance for their ordered arrangement within desmosomes that we believe is essential for desmosomal adhesive strength and the maintenance of tissue integrity.  相似文献   

13.
Desmosomal cadherins, desmogleins (Dsgs) and desmocollins, make up the adhesive core of intercellular junctions called desmosomes. A critical determinant of epithelial adhesive strength is the level and organization of desmosomal cadherins on the cell surface. The Dsg subclass of desmosomal cadherins contains a C-terminal unique region (Dsg unique region [DUR]) with unknown function. In this paper, we show that the DUR of Dsg2 stabilized Dsg2 at the cell surface by inhibiting its internalization and promoted strong intercellular adhesion. DUR also facilitated Dsg tail–tail interactions. Forced dimerization of a Dsg2 tail lacking the DUR led to decreased internalization, supporting the conclusion that these two functions of the DUR are mechanistically linked. We also show that a Dsg2 mutant, V977fsX1006, identified in arrhythmogenic right ventricular cardiomyopathy patients, led to a loss of Dsg2 tail self-association and underwent rapid endocytosis in cardiac muscle cells. Our observations illustrate a new mechanism desmosomal cadherins use to control their surface levels, a key factor in determining their adhesion and signaling roles.  相似文献   

14.
15.
16.
Intestinal epithelial cells (IECs) have critical roles in maintaining homeostasis of intestinal epithelium. Endoplasmic reticulum (ER) stress is implicated in intestinal epithelium homeostasis and inflammatory bowel disease; however, it remains elusive whether IRE1α, a major sensor of ER stress, is directly involved in these processes. We demonstrate here that genetic ablation of Ire1α in IECs leads to spontaneous colitis in mice. Deletion of IRE1α in IECs results in loss of goblet cells and failure of intestinal epithelial barrier function. IRE1α deficiency induces cell apoptosis through induction of CHOP, the pro-apoptotic protein, and sensitizes cells to lipopolysaccharide, an endotoxin from bacteria. IRE1α deficiency confers upon mice higher susceptibility to chemical-induced colitis. These results suggest that IRE1α functions to maintain the intestinal epithelial homeostasis and plays an important role in defending against inflammation bowel diseases.  相似文献   

17.
Desmoplakin (DP), plakoglobin (PG), and plakophilin 1 (PP1) are desmosomal components lacking a transmembrane domain, thus making them candidate linker proteins for connecting intermediate filaments and desmosomes. Using deletion and site-directed mutagenesis, we show that remarkably, removal of ~1% of DP's sequence obliterates its ability to associate with desmosomes. Conversely, when linked to a foreign protein, as few as 86 NH2-terminal DP residues are sufficient to target to desmosomes efficiently. In in vitro overlay assays, the DP head specifically associates with itself and with desmocollin 1a (Dsc1a). In similar overlay assays, PP1 binds to DP and Dsc1a, and to a lesser extent, desmoglein 1 (Dsg1), while PG binds to Dsg1 and more weakly to Dsc1a and DP. Interestingly, like DP, PG and PP1 associate with epidermal keratins, although PG is considerably weaker in its ability to do so. As judged by overlay assays, the amino terminal head domain of type II keratins appears to have a special importance in establishing these connections. Taken together, our findings provide new insights into the complexities of the links between desmosomes and intermediate filaments (IFs). Our results suggest a model whereby at desmosome sites within dividing epidermal cells, DP and PG anchor to desmosomal cadherins and to each other, forming an ordered array of nontransmembrane proteins that then bind to keratin IFs. As epidermal cells differentiate, PP1 is added as a molecular reinforcement to the plaque, enhancing anchorage to IFs and accounting at least partially for the increase in numbers and stability of desmosomes in suprabasal cells.  相似文献   

18.
The formation and stability of epithelial tissue involves cell adhesion and the connection of the intermediate filaments of contiguous cells, mediated by desmosomes. The cadherin family members Desmocollins (Dsc) and Desmogleins (Dsg) mediate desmosome extracellular adhesion. The main intracellular molecules identified linking Dscs and Dsgs with the intermediate filament network are Plakoglobin (PG), Plakophilins (PPs) and Desmoplakin (DP). Previous studies on desmosome-mediated adhesion have focused on the intracellular domains of Dsc and Dsg because of their capacity to interact with PG, PPs and DP. This study examines the role of the extracellular domain of Dsg1 upon desmosome stability in MDCK cells. Dsg1 was constructed containing an extracellular deletion (Dsg delta 1EC) and was expressed in MDCK cells. A high expressor Dsg delta 1EC/MDCK clone was obtained and analysed for its capacity to form desmosomes in cell monolayers and when growing under mechanical stress in three-dimensional collagen cultures. Phenotypic changes associated with the ectopic expression of Dsg1 delta EC in MDCK cells were: disturbance of the cytokeratin network, a change in the quality and number of desmosomes and impairment of the formation of cysts in suspension cultures. Interestingly, Dsg1 delta EC was not localized in desmosomes, but was still able to maintain its intracytoplasmic interaction with PG, suggesting that the disruptive effects were largely due to PG and/or PP sequestration.  相似文献   

19.
Desmosomal cadherins are a family of calcium regulated proteins involved in the formation of desmosomes, a type of cell junction important in maintaining cell adhesion and tissue stability. The desmosomal plaque consists of members of the desmosomal cadherin, plakin and armadillo family of proteins. Desmosomal cadherins are transmembrane glycoproteins that interact with desmosomal cadherins of the adjacent cells via their extracellular repeat domains and are divided in two subfamilies, the desmogleins (Dsg) and the desmocollins (Dsc). On the cytoplasmic side, the cadherins connect to the intermediate filament (IF) network indirectly by interacting with plakin and armadillo proteins. Here, we report the elucidation of the genomic structure of two mouse desmocollin genes, Dsc2 and Dsc3. Interestingly, at the genomic level, desmocollins show a higher degree of similarity to the classical cadherins, such as E-cadherin, than to the desmogleins.  相似文献   

20.
Intestinal epithelial cells (IECs) compose the first barrier against microorganisms in the gastrointestinal tract. Although the NF-κB pathway in IECs was recently shown to be essential for epithelial integrity and intestinal immune homeostasis, the roles of other inflammatory signaling pathways in immune responses in IECs are still largely unknown. Here we show that p38α in IECs is critical for chemokine expression, subsequent immune cell recruitment into the intestinal mucosa, and clearance of the infected pathogen. Mice with p38α deletion in IECs suffer from a sustained bacterial burden after inoculation with Citrobacter rodentium. These animals are normal in epithelial integrity and immune cell function, but fail to recruit CD4+ T cells into colonic mucosal lesions. The expression of chemokines in IECs is impaired, which appears to be responsible for the impaired T cell recruitment. Thus, p38α in IECs contributes to the host immune responses against enteric bacteria by the recruitment of immune cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号