首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Dominance Theory of Haldane''s Rule   总被引:21,自引:12,他引:9       下载免费PDF全文
M. Turelli  H. A. Orr 《Genetics》1995,140(1):389-402
``HALDANE's rule' states that, if species hybrids of one sex only are inviable or sterile, the afflicted sex is much more likely to be heterogametic (XY) than homogametic (XX). We show that most or all of the phenomena associated with HALDANE's rule can be explained by the simple hypothesis that alleles decreasing hybrid fitness are partially recessive. Under this hypothesis, the XY sex suffers more than the XX because X-linked alleles causing postzygotic isolation tend to have greater cumulative effects when hemizygous than when heterozygous, even though the XX sex carries twice as many such alleles. The dominance hypothesis can also account for the ``large X effect,' the disproportionate effect of the X chromosome on hybrid inviability/sterility. In addition, the dominance theory is consistent with: the long temporal lag between the evolution of heterogametic and homogametic postzygotic isolation, the frequency of exceptions to HALDANE's rule, puzzling Drosophila experiments in which ``unbalanced' hybrid females, who carry two X chromosomes from the same species, remain fertile whereas F(1) hybrid males are sterile, and the absence of cases of HALDANE's rule for hybrid inviability in mammals. We discuss several novel predictions that could lead to rejection of the dominance theory.  相似文献   

2.
M. Turelli  D. J. Begun 《Genetics》1997,147(4):1799-1815
The ``dominance theory' of HALDANE's rule postulates that hybrids of the heterogametic sex are more likely to be inviable or sterile than the homogametic sex because some of the epistatic incompatibilities contributing to postzygotic isolation behave as X-linked partial recessives. When this is true, pairs of taxa with relatively large X chromosomes should require less divergence time, on average, to produce HALDANE's rule than pairs with smaller Xs. Similarly, if the dominance theory is correct and if the X chromosome evolves at a similar rate to the autosomes, the size of the X should not influence the rate at which homogametic hybrids become inviable or sterile. We use Drosophila data to examine both of these predictions. As expected under the dominance theory, pairs of taxa with large X chromosomes (~40% of the nuclear genome) show HALDANE's rule for sterility at significantly smaller genetic distances than pairs with smaller X chromosomes (~20% of the genome). As also predicted, the genetic distances between taxa that exhibit female inviability/sterility show no differences between ``large X' vs. ``small X' pairs. We present some simple mathematical models to relate these data to the dominance theory and alternative hypotheses involving faster evolution of the X vs. the autosomes and/or faster evolution of incompatibilities that produce male-specific vs. female-specific sterility. Although the data agree qualitatively with the predictions of the dominance theory, they depart significantly from the quantitative predictions of simple models of the dominance theory and the other hypotheses considered. These departures probably stem from the many simplifying assumptions needed to tractably model epistatic incompatibilities and to analyze heterogeneous data from many taxa.  相似文献   

3.
Because selection is often sex-dependent, alleles can have positive effects on fitness in one sex and negative effects in the other, resulting in intralocus sexual conflict. Evolutionary theory predicts that intralocus sexual conflict can drive the evolution of sex limitation, sex-linkage, and sex chromosome differentiation. However, evidence that sex-dependent selection results in sex-linkage is limited. Here, we formally partition the contribution of Y-linked and non-Y-linked quantitative genetic variation in coloration, tail, and body size of male guppies (Poecilia reticulata)-traits previously implicated as sexually antagonistic. We show that these traits are strongly genetically correlated, both on and off the Y chromosome, but that these correlations differ in sign and magnitude between both parts of the genome. As predicted, variation in attractiveness was found to be associated with the Y-linked, rather than with the non-Y-linked component of genetic variation in male ornamentation. These findings show how the evolution of Y-linkage may be able to resolve sexual conflict. More generally, they provide unique insight into how sex-specific selection has the potential to differentially shape the genetic architecture of fitness traits across different parts of the genome.  相似文献   

4.
We discuss the evolutionary origin and elaboration of sociality using an indirect genetic effects perspective. Indirect genetic effects models simultaneously consider zygotic genes, genes expressed in social partners (especially mothers and siblings), and the interactions between them. Incorporation of these diverse genetic effects should lead to more realistic models of social evolution. We first review haplodiploidy as a factor that promotes the evolution of eusociality. Social insect biologists have doubted the importance of relatedness asymmetry caused by haplodiploidy and focused on other predisposing factors such as maternal care. However; indirect effects theory shows that maternal care evolves more readily in haplodiploids, especially with inbreeding and despite multiple mating. Because extended maternal care is believed to be a precondition for the evolution of eusociality, the evolutionary bias towards maternal care in haplodiploids may result in a further bias towards eusociality in these groups. Next, we compare kin selection and parental manipulation and then briefly review additional hypotheses for the evolutionary origin of eusociality. We present a verbal model for the evolutionary origin and elaboration of sib-social care from maternal care based on the modification of the timing of expression of maternal care behaviors. Specifically, heterochrony genes cause maternal care behaviors to be expressed prereproductively towards siblings instead of postreproductively towards offspring. Our review demonstrates that both maternal effect genes (expressed in a parental manipulation manner) and direct effect zygotic genes (expressed in an offspring control manner) are likely involved in the evolution of eusociality. We conclude by describing theoretical and empirical advances with indirect genetic effects and sociogenomics, and we provide specific quantitative genetic and genomic predictions from our heterochrony model for the evolutionary origin and elaboration of eusociality.  相似文献   

5.
The conflict theory of genomic imprinting predicts that imprinted genes are growth enhancing when paternally expressed and growth suppressing when maternally expressed. The expression pattern of autosomal imprinted genes generally fits these predictions. However, the conflict theory cannot easily account for the pattern of X-linked imprinting in humans and mice. This has led us to propose a novel hypothesis that X-linked imprinting has evolved to control sex specific gene expression in early embryos. The hypothesis links paternal X-imprinting (i.e. paternal copy silencing) to random X-inactivation and the retention of Y-linked copies, and links maternal X-imprinting to escape from random X-inactivation and the loss of Y-linked copies.The hypothesis offers a good explanation of the existing data on X-imprinted genes.  相似文献   

6.
During the process of speciation, diverging taxa often hybridize and produce offspring wherein the heterogametic sex (i.e., XY or ZW) is unfit (Haldane's rule). Dominance theory seeks to explain Haldane's rule in terms of the difference in X-linked dominance regimes experienced by the sexes. However, X inactivation in female mammals extends the effects of hemizygosity to both sexes. Here, we highlight where the assumptions of dominance theory are particularly problematic in marsupials, where X inactivation uniformly results in silencing the paternal X. We then present evidence of Haldane's rule for sterility but not for viability in marsupials, as well as the first violations of Haldane's rule for these traits among all mammals. Marsupials represent a large taxonomic group possessing heteromorphic sex chromosomes, where the dominance theory cannot explain Haldane's rule. In this light, we evaluate alternative explanations for the preponderance of male sterility in interspecific hybrids, including faster male evolution, X-Y interactions, and genomic conflict hypotheses.  相似文献   

7.
The presence of fetal cells has been associated with both positive and negative effects on maternal health. These paradoxical effects may be due to the fact that maternal and offspring fitness interests are aligned in certain domains and conflicting in others, which may have led to the evolution of fetal microchimeric phenotypes that can manipulate maternal tissues. We use cooperation and conflict theory to generate testable predictions about domains in which fetal microchimerism may enhance maternal health and those in which it may be detrimental. This framework suggests that fetal cells may function both to contribute to maternal somatic maintenance (e.g. wound healing) and to manipulate maternal physiology to enhance resource transmission to offspring (e.g. enhancing milk production). In this review, we use an evolutionary framework to make testable predictions about the role of fetal microchimerism in lactation, thyroid function, autoimmune disease, cancer and maternal emotional, and psychological health. Also watch the Video Abstract .  相似文献   

8.
Sex ratio theory provides a powerful source of testable predictions about sex allocation strategies. Although studies of invertebrates generally support predictions derived from the sex ratio theory, evidence for adaptive sex ratio biasing in vertebrates remains contentious. This may be due to the fact that most studies of vertebrates have focused on facultative adjustment in relation to maternal condition, rather than processes that might produce uniform sex biases across individuals. Here, we examine the effects of local resource enhancement (LRE) and local resource competition (LRC) on birth sex ratios (BSRs). We also examine the effects of sex differences in the costs of rearing male and female offspring on BSRs. We present data from 102 primate species and show that BSRs are skewed in favour of the dispersing sex in species that do not breed cooperatively, as predicted by the LRC model. In accordance with the LRE model, BSRs are generally skewed in favour of the more beneficial sex in cooperatively breeding primate species. There is no evidence that BSRs reflect the extent of sexual size dimorphism, an indirect measure of the costs of rearing male and female offspring. These analyses suggest that adaptive processes may play an important role in the evolution of BSRs in vertebrates.  相似文献   

9.
Molecular evolutionary theory predicts that the ratio of autosomal to X-linked adaptive substitution (K(A)/K(x)) is primarily determined by the average dominance coefficient of beneficial mutations. Although this theory has profoundly influenced analysis and interpretation of comparative genomic data, its predictions are based upon two unverified assumptions about the genetic basis of adaptation. The theory assumes that 1) the rate of adaptively driven molecular evolution is limited by the availability of beneficial mutations, and 2) the scaling of evolutionary parameters between the X and the autosomes (e.g., the beneficial mutation rate, and the fitness effect distribution of beneficial alleles, per X-linked versus autosomal locus) is constant across molecular evolutionary timescales. Here, we show that the genetic architecture underlying bouts of adaptive substitution can influence both assumptions, and consequently, the theoretical relationship between K(A)/K(x) and mean dominance. Quantitative predictions of prior theory apply when 1) many genomically dispersed genes potentially contribute beneficial substitutions during individual steps of adaptive walks, and 2) the population beneficial mutation rate, summed across the set of potentially contributing genes, is sufficiently small to ensure that adaptive substitutions are drawn from new mutations rather than standing genetic variation. Current research into the genetic basis of adaptation suggests that both assumptions are plausibly violated. We find that the qualitative positive relationship between mean dominance and K(A)/K(x) is relatively robust to the specific conditions underlying adaptive substitution, yet the quantitative relationship between dominance and K(A)/K(x) is quite flexible and context dependent. This flexibility may partially account for the puzzlingly variable X versus autosome substitution patterns reported in the empirical evolutionary genomics literature. The new theory unites the previously separate analysis of adaptation using new mutations versus standing genetic variation and makes several useful predictions about the interaction between genetic architecture, evolutionary genetic constraints, and effective population size in determining the ratio of adaptive substitution between autosomal and X-linked genes.  相似文献   

10.
In mammals, some embryonic genes are expressed differently depending on whether they are inherited from the sperm or egg, a phenomenon known as genomic imprinting. The information on the parental origin is transmitted by an epigenetic mark. Both the molecular mechanisms and evolutionary processes of genomic imprinting have been studied extensively. Here, I illustrate the simplest evolutionary dynamics of imprinting evolution based on the “conflict theory,” by considering the evolution of a gene encoding an embryonic growth factor controlling the maternal resource supply. It demonstrates that (a) the autosomal genes controlling placenta development to modify maternal resource acquisition may evolve a strong asymmetry of gene expression, provided the mother has some chance of accepting multiple males. (b) The genomic imprinting may not evolve if there is a small fraction of recessive deleterious mutations on the gene. (c) The growth-enhancing genes should evolve to paternally expressed, while the growth-suppressing genes should evolve to maternally expressed. (d) The X-linked genes also evolve genomic imprinting, but the main evolutionary force is the sex difference in the optimal embryonic size. I discuss other aberrations that can be explained by the modified versions of the basic model.  相似文献   

11.
We analyse the evolution of X chromosome-linked imprinting by modifying our previous model of imprinting of autosomal genes that influence the trade-off between maternal fecundity and offspring viability through alterations in maternal investment (Mills and Moore, 2004). Unlike previous genetic models, we analyse X-linked imprinting in the context of populations at equilibrium for either autosomal or X-linked biallelically expressed alleles at loci that influence the fecundity/viability trade-off. We show that selection under parental conflict over maternal investment in offspring can parsimoniously explain the occurrence of sex-specific gene expression patterns, without a requirement to postulate direct selection for sexual dimorphism mediated through imprinting. We note that sex chromosome imprinting causes a small distortion of the post-weaning sex ratio, providing a possible selection pressure against the evolution of X-linked imprints. We discuss our conclusions in the context of recent reports of imprinting of mouse X-linked Xlr genes.  相似文献   

12.
Wild G  West SA 《The American naturalist》2007,170(5):E112-E128
Tests of sex allocation theory in vertebrates are usually based on verbal arguments. However, the operation of multiple selective forces can complicate verbal arguments, possibly making them misleading. We construct an inclusive fitness model for the evolution of condition-dependent brood sex ratio adjustment in response to two leading explanations for sex ratio evolution in vertebrates: the effect of maternal quality on the fitness of male and female offspring (the Trivers-Willard hypothesis [TWH]) and local resource competition (LRC) between females. We show (1) the population sex ratio can be either unbiased or biased in either direction (toward either males or females); (2) brood sex ratio adjustment can be biased in either direction, with high-quality females biasing reproductive investment toward production of sons (as predicted by the TWH) or production of daughters (opposite to predictions of the TWH); and (3) selection can favor gradual sex ratio adjustment, with both sons and daughters being produced by both high- and low-quality mothers. Despite these complications, clear a priori predictions can be made for how the population sex ratio and the conditional sex ratio adjustment of broods should vary across populations or species, and within populations, across individuals of different quality.  相似文献   

13.
Trivers and Willard predicted that when parental condition has differential effects on the fitness of male and female offspring, parents who are in good condition will bias investment toward the sex that benefits most from additional investment. Efforts to test predictions derived from Trivers and Willard''s model have had mixed results, perhaps because most studies have relied on proxy measures of parental condition, such as dominance rank. Here, we examine the effects of female baboons condition on birth sex ratios and post-natal investment, based on visual assessments of maternal body condition. We find that local environmental conditions have significant effects on female condition, but maternal condition at conception has no consistent relationship with birth sex ratios. Mothers who are in poorer condition at the time of conception resume cycling significantly later than females who are in better condition, but the sex of their infants has no effect on the time to resumption of cycling. Thus, our findings provide strong evidence that maternal condition influences females'' ability to reproduce, but females do not facultatively adjust the sex ratio of their offspring in relation to their dominance rank or current condition.  相似文献   

14.
The validity and value of inclusive fitness theory   总被引:1,自引:0,他引:1  
Social evolution is a central topic in evolutionary biology, with the evolution of eusociality (societies with altruistic, non-reproductive helpers) representing a long-standing evolutionary conundrum. Recent critiques have questioned the validity of the leading theory for explaining social evolution and eusociality, namely inclusive fitness (kin selection) theory. I review recent and past literature to argue that these critiques do not succeed. Inclusive fitness theory has added fundamental insights to natural selection theory. These are the realization that selection on a gene for social behaviour depends on its effects on co-bearers, the explanation of social behaviours as unalike as altruism and selfishness using the same underlying parameters, and the explanation of within-group conflict in terms of non-coinciding inclusive fitness optima. A proposed alternative theory for eusocial evolution assumes mistakenly that workers' interests are subordinate to the queen's, contains no new elements and fails to make novel predictions. The haplodiploidy hypothesis has yet to be rigorously tested and positive relatedness within diploid eusocial societies supports inclusive fitness theory. The theory has made unique, falsifiable predictions that have been confirmed, and its evidence base is extensive and robust. Hence, inclusive fitness theory deserves to keep its position as the leading theory for social evolution.  相似文献   

15.
Facultative investment in offspring sex is related to maternal condition in many organisms. In mammals, empirical support for condition-dependent sex allocation is equivocal, and there is some doubt as to theoretical expectations. Much theory has been developed to make predictions for condition-dependent sex ratios in populations with discrete generations. However, the extension of these predictions to populations with overlapping generations (OLGs; e.g., mammals) has been limited, leaving doubt as to the specific prediction for maternal-condition-dependent sex ratios in mammals. We develop a population genetics model that incorporates maternal effects on multiple offspring fitness components in a population with OLGs. Using a rare-gene and evolutionarily stable strategy approach, we demonstrate that sex ratio predictions of this model are identical to those for equivalent discrete generations models. We show that the predicted sex ratios depend on the sex-specific ratio of R(o) (offspring lifetime fitness) for offspring of good and poor mothers. This offspring lifetime fitness rule indicates that empirical research on conditional sex ratios should consider all three components of offspring R(o) (juvenile survival, adult life span, and fertility).  相似文献   

16.
In a verbal model, Trivers and Willard proposed that, whenever there is sexual selection among males, natural selection should favor mothers that produce sons when in good condition but daughters when in poor condition. The predictions of this model have been the subject of recent debate. We present an explicit population genetic model for the evolution of a maternal-effect gene that biases offspring sex ratio. We show that, like local mate competition, sexual selection favors female-biased sex ratios whenever maternal condition affects the reproductive competitive ability of sons. However, Fisherian sex-ratio selection, which favors a balanced sex ratio, is an opposing force. We show that the evolution of maternal sex-ratio biasing by these opposing selection forces requires a positive covariance across environments between the sex-ratio bias toward sons (b) and the mating success of sons (r). This covariance alone is not a sufficient condition for the evolution of maternal sex-ratio biasing; it must be sufficiently positive to outweigh the opposing sex-ratio selection. To identify the necessary and sufficient conditions, we partition total evolutionary change into three components: (1) maternal sex-ratio bias, (2) sexual selection on sons, and (3) sex-ratio selection. Because the magnitude of the first component asymmetrically affects the strength of the second, biasing broods toward females in a poor environment evolves faster than the same degree of bias toward males in a good environment. Consequently, female-biased sex ratios, rather than male-biased sex ratios, are more likely to evolve. We discuss our findings in the context of the primary sex-ratio biases observed in strongly sexually selected species and indicate how this perspective can assist the experimental study of sex ratio evolution.  相似文献   

17.
Sexual conflict has been proposed as a potential selective agent in the evolution of a variety of traits. Here, we present a simple model that investigates the initial conditions under which sex-linked and sex-limited harming alleles can invade a population. In this paper, we expand previous threshold models to study how sex-linkage and sex determination mechanisms affect the spreading conditions of a harming allele. Our models provide new insights into how sexual conflict could originate, showing that in diploid organisms the probability of a new harming allele spreading is independent of both the genetic sex determination system and the dominance relationships. However, the incidence of interlocus sexual conflicts in the initial steps of the invasion critically depends on the inheritance system.  相似文献   

18.
The medaka Oryzias latipes and its two sister species, O. curvinotus and O. luzonensis, possess an XX-XY sex-determination system. The medaka sex-determining gene DMY has been identified on the orthologous Y chromosome [O. latipes linkage group 1 (LG1)] of O. curvinotus. However, DMY has not been discovered in other Oryzias species. These results and molecular phylogeny suggest that DMY was generated recently [approximately 10 million years ago (MYA)] by gene duplication of DMRT1 in a common ancestor of O. latipes and O. curvinotus. We identified seven sex-linked markers from O. luzonensis (sister species of O. curvinotus) and constructed a sex-linkage map. Surprisingly, all seven sex-linked markers were located on an autosomal linkage group (LG12) of O. latipes. As suggested by the phylogenetic tree, the sex chromosomes of O. luzonensis should be "younger" than those of O. latipes. In the lineage leading to O. luzonensis after separation from O. curvinotus approximately 5 MYA, a novel sex-determining gene may have arisen and substituted for DMY. Oryzias species should provide a useful model for evolution of the master sex-determining gene and differentiation of sex chromosomes from autosomes.  相似文献   

19.
Evolutionary theory predicts that sexually antagonistic mutations accumulate differentially on the X chromosome and autosomes in species with an XY sex-determination system, with effects (masculinization or feminization of the X) depending on the dominance of mutations. Organisms with alternative modes of inheritance of sex chromosomes offer interesting opportunities for studying sexual conflicts and their resolution, because expectations for the preferred genomic location of sexually antagonistic alleles may differ from standard systems. Aphids display an XX/X0 system and combine an unusual inheritance of the X chromosome with the alternation of sexual and asexual reproduction. In this study, we first investigated theoretically the accumulation of sexually antagonistic mutations on the aphid X chromosome. Our results show that i) the X is always more favourable to the spread of male-beneficial alleles than autosomes, and should thus be enriched in sexually antagonistic alleles beneficial for males, ii) sexually antagonistic mutations beneficial for asexual females accumulate preferentially on autosomes, iii) in contrast to predictions for standard systems, these qualitative results are not affected by the dominance of mutations. Under the assumption that sex-biased gene expression evolves to solve conflicts raised by the spread of sexually antagonistic alleles, one expects that male-biased genes should be enriched on the X while asexual female-biased genes should be enriched on autosomes. Using gene expression data (RNA-Seq) in males, sexual females and asexual females of the pea aphid, we confirm these theoretical predictions. Although other mechanisms than the resolution of sexual antagonism may lead to sex-biased gene expression, we argue that they could hardly explain the observed difference between X and autosomes. On top of reporting a strong masculinization of the aphid X chromosome, our study highlights the relevance of organisms displaying an alternative mode of sex chromosome inheritance to understanding the forces shaping chromosome evolution.  相似文献   

20.
Maternal care and female-biased sex ratios are considered by many to be essential prerequisites for the evolution of eusocial behaviors among the hymenoptera. Using population genetic models, I investigate the evolution of genes that have positive maternal effects but negative, direct effects on offspring fitness. I find that, under many conditions, such genes evolve more easily in haplo-diploids than in diplo-diploids. In fact, the conditions are less restrictive than those of kin selection theory, which postulate genes with negative direct effects but positive sib-social effects. For example, the conditions permitting the evolution of maternal effect genes are not affected if females mate multiply, whereas multiple mating reduces the efficacy of kin selection by reducing genetic relatedness within colonies. Inbreeding also differentially facilitates evolution of maternal effect genes in haplo-diploids relative to diplo-diploids, although it does not differentially affect the evolution of sib-altruism genes. Furthermore, when the direct, deleterious pleiotropic effect is restricted to sons, a maternal effect gene can evolve when the beneficial maternal effect is less than half (with inbreeding, much less) of the deleterious effect on sons. For kin selection, however, the sib-social benefits must always exceed the direct costs because genetic relatedness is always less than or equal to 1.0. The results suggest that haplo-diploidy facilitates (1) the evolution of maternal care, and (2) the evolution of maternal effect genes with antagonistic pleiotropic effects on sons. The latter effect may help explain the tendency toward female-biased sex ratios in haplo-diploids, especially those with inbreeding. I conclude that haplo-diploidy not only facilitates the evolution of sister-sister altruism by kin selection but also facilitates the evolution of maternal care and female-biased sex ratios, two prerequisites for eusociality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号