首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C R Parker  A Capdevila 《Peptides》1984,5(4):701-706
In the current study, we found evidence for the existence of binding sites for TRH in synaptic membrane preparations of several regions of the postmortem adult human brain. High levels of specific binding (fmol [3H]Me-TRH/mg protein/2 hr) were found in limbic structures: amygdala (7.1 +/- 0.6, Mean +/- SE), hippocampus (2.8 +/- 0.3), and temporal cortex (2.4 +/- 0.8). Intermediate levels of binding were found in the hypothalamus and nucleus accumbens whereas binding was low to undetectable in frontal and occipital cortex, cerebellum, pons, medulla and corpus striatum. Binding of the radioligand was linear over protein concentrations of 0.05-1.5 mg, and greater than 6 hr of incubation was required to achieve maximal binding. In the amygdala, binding was inhibited in the presence of TRH and Me-TRH but not in the presence of up to 1 microM concentrations of cyclo (His-Pro), TRH-OH, pGlu-His or peptides unrelated to TRH. Pretreatment of amygdala synaptic membranes with detergents, proteases or phospholipases disrupted [3H]Me-TRH binding; pretreatment with DNase or collagenase had no effect on binding. Saturation and association/dissociation analyses of the binding of [3H]Me-TRH to purified amygdala synaptic membranes revealed the presence of a high affinity (KD = 2.0 nM), low capacity (Bmax = 180 +/- 16 fmoles/mg protein) binding site. These results demonstrate that a highly specific membrane associated receptor for TRH is present in the adult human brain. The specific role that this receptor plays in brain function remains to be elucidated.  相似文献   

2.
The distribution of cyclo(His-Pro), thyrotropin-releasing hormone (TRH) and Pyroglutamate aminopeptidase activity in adult and developing rat brains were studied. A comparison of the subcellular distribution of Pyroglutamate aminopeptidase activity in hypothalamic and cerebral cortical extracts from adult rats exhibited remarkable differences. In hypothalamus, the enzyme activity was mainly associated with the soluble fraction whereas in cortex it was predominantly associated with the particulate fractions. During postnatal development, the brain concentrations of cyclo(His-Pro) and Pyroglutamate aminopeptidase activities declined with age. These data suggest that Pyroglutamate aminopeptidase activity, but not TRH, plays an active role in determining the levels of endogenous cyclo(His-Pro) concentrations in brain.  相似文献   

3.
Measurements of cyclo(His-Pro) levels in human urine were carried out by specific radioimmunoassay. Cyclo(His-Pro)-like immunoreactivity in Human urine was found to be immunologically, pharmacologically, and physico-chemically identical to that of synthetic cyclo(His-Pro). The concentration of urinary cyclo(His-Pro) in 24-h collection was 1133.8 +/- 122.5 nmol/L, with a range of 606 to 1865 nmol/L. The daily excretion rate of cyclo(His-Pro) was 1812 +/- 248 nmol cyclo(His-Pro)/g creatinine, or 1814 +/- 199 nmol cyclo(His-Pro/day.  相似文献   

4.
The distribution of cyclo(His-Pro), thyrotropin-releasing hormone (TRH) and pyroglutamate aminopeptidase activity was examined in the rat gastrointestinal (GI) tract. Cyclo(His-Pro)-like immunoreactivity was present in the following order of distribution (fmoles/mg protein): caecum > colon = jejunum = ileum > stomach = duodenum = rectum, and was immunologically and chromatographically identical with the authentic cyclo(His-Pro). Cyclo(His-Pro) concentrations showed significantly positive correlations with TRH concentrations, but not with pyroglutamate aminopeptidase activities, in most tissues of the GI tract, suggesting a precursor role of TRH for gut cyclo(His-Pro). These data suggest that cyclo(His-Pro) may be involved in regulating rat GI functions.  相似文献   

5.
M Mori  J F Wilber  T Nakamoto 《Life sciences》1983,33(21):2091-2095
The potential effect of maternal caffeine ingestion upon total brain protein and the concentration of two prototype neuropeptides, thyrotropin-releasing hormone (TRH) and its derivative, cyclo (His-Pro) in neonates was examined during the nursing period in the context of variable maternal protein intake. Maternal caffeine intake (2 mg/100 g body weight) significantly increased the total brain protein of neonates derived from dams fed a 6% casein diet, but not from dams fed a 12%- or 20%-casein diet. Maternal caffeine consumption significantly increased the amount of cyclo (His-Pro) in the neonatal brains in all groups. The percent increments in pups from dams fed 6%, 12%, and 20% casein diets were respectively 137%, 131%, and 120%. By contrast, no significant alterations were observed in TRH concentrations between caffeine and control groups. It is concluded that maternal caffeine can influence neonatal brain protein and cyclo (His-Pro) during nursing under conditions of protein-energy malnutrition.  相似文献   

6.
M Mori  J F Wilber  T Nakamoto 《Life sciences》1984,35(25):2553-2560
We studied whether protein-energy malnutrition changed brain susceptibility to a small dose of caffeine in newborn rats. Since we had demonstrated previously that caffeine intake during lactation increased the brain neuropeptide on newborns, we investigated further the effects of the prenatal administration of caffeine on TRH and cyclo (His-Pro). From day 13 of gestation to delivery day, pregnant rats in one group were fed either a 20% or a 6% protein diet ad libitum, and those in the other group were pair-fed with each protein diet supplemented with caffeine at an effective dose of 2 mg/100 g body weight. Upon delivery, brain weight, brain protein, RNA, DNA and the neuropeptides thyrotropin-releasing hormone (TRH) and cyclo (His-Pro) were measured in the newborn rats. A 6% protein without caffeine diet caused reductions in brain weights and brain protein, RNA and DNA contents, but did not alter brain TRH and cyclo (His-Pro) concentrations in the newborn animals. In the offspring from dams fed a 6% protein diet, caffeine administration significantly elevated brain weights and brain contents of protein, RNA and DNA. In contrast, these values were similar between noncaffeine and caffeine-supplemented animals in a 20% protein diet group. Brain TRH and cyclo (His-Pro) concentrations were not changed by caffeine administration. These data suggest that caffeine augments protein synthesis in the newborn rat brain when malnourished, but that the same dose of caffeine did not affect protein synthesis in brains of newborn rats from normally nourished dams. Therefore, the present findings indicate that the nutritional status of mothers during pregnancy has important implication in the impact of caffeine on their offspring's brains.  相似文献   

7.
Measurements of cyclo (His-Pro) in the pancreas were carried out in the rat by a specific radioimmunoassay. Cyclo (His-Pro)-like immunoreactivity was identified in pancreatic islets with a mean concentration of 2023 pg/mg protein, 88-fold higher than that of the whole pancreas. Cyclo (His-Pro) immunoreactivity from pancreatic extracts was indistinguishable immunologically and chromatographically from synthetic cyclo (His-Pro). Insulin-induced hypoglycemia caused a significant, 53% decrease in pancreatic cyclo (His-Pro) concentrations, and FLA-63, a dopamine beta-oxidase inhibitor, also reduced islet cyclo (His-Pro) concentrations 51%. These data indicate that cyclo (His-Pro) is present in rat pancreatic islets and may play a potential role in modulating pancreatic responses to nutrient and pharmacologic stimuli.  相似文献   

8.
Histidyl-proline diketopiperazine (cyclo(His-Pro), a metabolite of the neuropeptide thyrotropin releasing hormone, has been shown to possess intrinsic biological activities. The binding of this peptide to various tissue particulate preparations was investigated. While the peptide showed no apparent binding to particulate fractions derived from brain, pituitary, and some other tissues, binding to adrenal and liver was demonstrated. The binding of cyclo(His-Pro) to bovine adrenal cortical particles was further characterized. Binding at equilibrium was greater at 4 degrees C than at 37 degrees C. The binding was dependent on tissue concentration, showed a pH optimum between 7 and 8, and was inactivated by treatment of the particulate fraction with trypsin or by boiling. The interaction of cyclo(His-Pro) with the tissue was not associated with any metabolism of the peptide. Kinetic studies of association of cyclo(His-Pro) with adrenal cortical particles indicated a single class of binding sites with a KD of approximately 900 nM and a maximum number of sites of 92 pmoles/mg protein. The binding was stereospecific and the histidine moiety of the peptide was the major determinant of the binding. A variety of catechols, serotonin and histamine competed with cyclo(His-Pro) for binding with IC50's ranging from 17-450 muM. Cyclo(His-Pro) did not affect monoamine oxidase or adenylate cyclase activity in adrenal cortical particulate preparations.  相似文献   

9.
Summary Histidyl-proline diketopiperazine [cyclo(His-Pro)] is a metabolic of thyrotropin releasing hormone (TRH). This review summarizes the literature concerning cyclo (His-Pro) and, in addition, some studies dealing with TRH and other peptides that are considered of interest. The enzymes concerned with the metabolism of TRH are discussed. Distribution studies of peptides by immunological methods show that, while TRH is concentrated in synaptosomes, cyclo (His-Pro) is not, suggesting that cyclo (His-Pro) is not a classical neurotransmitter. Rat brain contains approximately three times as much cyclo (His-Pro) as TRH, mainly localized in the pituitary and hypothalamus. While the TRH is found in a free form, the cyclo (His-Pro) is bound to a carrier of molecular weight approximately 70 000. While specific membrane receptors for TRH have been detected in pituitary cells, no such receptors for cyclo (His-Pro) have yet been found in brain or pituitary; however, there is a specific binding of cyclo (His-Pro) to adrenal cortex membranes, Both TRH and cyclo (His-Pro) have effects in the central nervous system or pituitary. These include effects on prolactin release, thermoregulation, CNS depression, stereotypic behavior and cyclic nucleotide levels. Possible mechanisms and interrelations of these effects are discussed.  相似文献   

10.
We have found cyclo(His-Pro) binding in rat liver plasma membranes. This study focused on the characterization of solubilized binding for cyclo(His-Pro) in rat liver membranes. The cyclo(His-Pro) binding of liver membranes was solubilized by digitonin and octyl-glucopyranoside. The efficiency of solubilization with digitonin was greater. However, cyclo(His-Pro) binding was not solubilized by Triton X-100, CHAPS, or Lubrol. Digitonin-solubilized membranes showed cyclo(His-Pro) binding with a high affinity constant (17 nM) and a low binding capacity (38 fmol/mg protein). Lectins from wheat germ, Bandeiraea simplicifolia II, Dolichos biflorus, Glycine max, and Tetragonolobus purpureas significantly adsorbed [3H]cyclo(His-Pro)-binding complex, but Bandeiraea simplicifolia I, Ricinus communis I, or Lens culinaris did not adsorb the binding complex. An analysis of [3H]cyclo(His-Pro)-associated membranes by high performance gel filtration chromatography showed a radioactive peak of Mr 200,000. These data indicate that cyclo(His-Pro) binding of rat liver membranes is solubilized by digitonin and is a glycoprotein of Mr 200,000.  相似文献   

11.
Cyclo (His-Pro): a selective inhibitor of rat prolactin secretion in vitro   总被引:1,自引:0,他引:1  
Cyclo (His-Pro) (10 ng/ml), inhibits KCl (59 mM) or thyrotropin-releasing hormone (10 ng/ml) stimulated, but not basal, release of prolactin from rat hemipituitaries in vitro. However, cyclo (His-Pro) has no effect on the basal or stimulated release of thyrotropin and growth hormone. Cyclo (His-Pro) does not inhibit the binding of thyrotropin-releasing hormone to pituitary membrane suggesting that cyclo (His-Pro) inhibition of prolactin release is not mediated via the pituitary TRH-receptor.  相似文献   

12.
Characteristics of cyclo(His-Pro) binding sites in the rat liver were studied using 3H-labeled cyclo(His-Pro). Scatchard analysis suggested that the rat liver membrane had a single binding site with an apparent dissociation constant (Kd) of 7 X 10(-8) M. Pretreatment of membrane preparations with soybean trypsin inhibitor increased cyclo(His-Pro) binding, and the binding activity was sensitive to trypsin and phospholipase A digestion, suggesting that protein and phospholipid moieties are essential for cyclo(His-Pro) binding. Thiol reagents reduced binding activity, suggesting that the thiol group might be an important constituent of the cyclo(His-Pro) binding site. Cross-reactivities of TRH, TRH analogues, L-His and L-Pro were very low (0.2-9%). These findings indicate that specific binding sites for cyclo(His-Pro) in the rat liver have similar properties to the receptors for other polypeptides.  相似文献   

13.
The mechanisms of inactivation of thyrotrophin-releasing hormone (TRH) by peptidases in several areas of normal human postmortem brain have been investigated by radioimmunoassay and high-performance liquid chromatography. Of the several brain regions studied, the cerebral cortex (Brodman's area, BA10) had the highest TRH-degrading activity in both subcellular fractions. Deamidated-TRH (TRH-OH) was the only product formed by the soluble fraction whereas the histidyl-proline diketopiperazine, cyclo(His-Pro), and a small amount of TRH-OH were formed by the particulate fraction. Several centrally acting TRH analogues showed varying degrees of resistance to degradation by the peptidases in the two fractions, the most stable analogue being RX77368 (pGlu-His-3,3'-dimethyl(ProNH2]. Areas of human postmortem brain appear to contain two of the enzymes capable of degrading TRH, a proline endopeptidase forming TRH-OH and a pyroglutamyl aminopeptidase forming cyclo(His-Pro). The use of the assay procedures in further studies on the inactivation of TRH by peptidases from brain areas of patients with neurological disorders may provide complementary information on the dynamics of TRH in these disorders. The stability of the centrally acting TRH analogues may prove useful in examining their therapeutic potential.  相似文献   

14.
[3H]cyclo(His-Pro) bound with high affinity (59 nM) to a single class of sites in rat liver plasma membranes, without significant tracer degradation during equilibration for 60 min at 0 degrees C. Binding was specific and saturable (3.9 pmol/mg protein), and were increased by the addition of K+, Mg++ and Na+ at optimal concentrations, but not of Ca++ at all concentrations tested. In vivo administration of cyclo(His-Pro), but not thyrotropin-releasing hormone, to rats caused the downregulation of cyclo(His-Pro)-binding sites with decreases in specific binding numbers but did not change binding affinity.  相似文献   

15.
Cyclo(His-Pro), or histidyl-proline diketopiperazine, is an endogenous cyclic dipeptide that is ubiquitously distributed in tissues and body fluids of both man and animals. This cyclic dipeptide is not only structurally related to thyrotropin-releasing hormone (TRH, pGlu-His-ProNH2), but it can also arise from TRH by the action of the enzyme pyroglutamate amino-peptidase (pGlu-peptidase). The data on the distribution of TRH, cyclo(His-Pro), and pGlu-peptidase under normal and abnormal conditions are summarized and potential relationships analyzed. We conclude that all of the cyclo(His-Pro) cannot be derived from TRH. Two additional sources of cyclo(His-Pro) are suggested. It is proposed that 29,247 molecular weight TRH prohormone, prepro TRH, which contains 5 copies of TRH sequence, can be processed to yield cyclo(His-Pro). Thus, both TRH and cyclo(His-Pro) share a common precursor, prepro[TRH/Cyclo(His-Pro)].  相似文献   

16.
Intracerebral administration of cyclo (His-Pro), the postulated metabolite of thyroliberin (TRH, pGlu-His-Pro-NH2) inhibited the naloxone induced withdrawal responses in morphine dependent mice. Mice were rendered dependent on morphine by the subcutaneous implantation of a pellet (containing 75 mg of morphine free base) for three days. Six hours after pellet removal, the naloxone ED50 for the jumping response was found to be higher in mice injected with cyclo (His-Pro) compared with that of vehicle controls. Similarly, the hypothermic response observed following 50 μg/kg of naloxone given given 6 h after pellet removal or that seen with 100 μg/kg of naloxone given 24 h after pellet removal from morphine-dependent mice was inhibited by cyclo (His-Pro). Previously, we have shown similar results with TRH on the morphine abstinence syndrome. It appears, therefore, that cyclo (His-Pro) may be the active metabolite of TRH and analogs of cyclo (His-Pro) may be useful in blocking the symptoms of the opiate abstinence syndrome.  相似文献   

17.
The distribution of cyclo(His-Pro), thyrotropin-releasing hormone and pyroglutamate aminopeptidase activity was examined in the CSF of human and a number of other mammalian species. Cyclo(His-Pro)-like immunoreactivity was present in the CSF of all species examined, and was immunologically and chromatographically identical with the authentic cyclo(His-Pro). Cyclo(His-Pro) concentration in CSF had no significant correlation with CSF TRH or pyroglutamate aminopeptidase.  相似文献   

18.
Potential mechanism(s) underlying the fasting-associated rise in hypothalamic cyclo(His-Pro) content was explored by examining the effects of 24-hour fasting on: (i) cyclo(His-Pro) synthesis from TRH, (ii) cyclo(His-Pro) metabolism, and (iii) cyclo (His-Pro) secretion by hypothalamic tissue in vitro. The data presented here show that none of these three variables were altered due to fasting. Two additional potential changes that could cause cyclo(His-Pro) elevations during fasting are suggested. These include an in vivo decrease in hypothalamic cyclo(His-Pro) secretion that may not be apparent in vitro, and/or an increase in the synthesis of cyclo(His-Pro) from a precursor(s) other than TRH.  相似文献   

19.
The distribution of cyclo (His-Pro)-like immunoreactivity in frog skins from seven frog species was examined. The chromatographic elution profile of cyclo (His-Pro)-like immunoreactivity in amphibian skins measured by radioimmunoassay corresponded precisely to that of [3H-Pro]-cyclo (His-Pro) after DEAE-Cellulose, Sephadex G-25 and high-pressure liquid chromatography. The concentrations of cyclo (His-Pro) in frog skins were much higher than the concentrations of TRH previously observed in skin and the concentrations of cyclo (His-Pro) in both brain and gastrointestinal tract.  相似文献   

20.
Cyclo(Histidyl-Proline) is a metabolite of thyrotropin-releasing hormone. It has been suggested that this peptide plays a role in regulating prolactin secretion in GH cells. An investigation of the effect of cyclo(His-Pro) on GH cells indicated that it does not affect basal prolactin release or accumulation or the levels stimulated by TRH. cAMP levels in GH cells are elevated by TRH or VIP, but not influenced by cyclo(His-Pro). cGMP levels in GH cells are not affected by either TRH or cyclo(His-Pro). While there is specific binding of TRH to receptors in GH cells, no such receptors for cyclo(His-Pro) are detectable. It is suggested that GH cells are unresponsive to cyclo(His-Pro).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号