首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cell wall and soluble polysaccharides that reacted with Trichosporon domesticum factor III serum were isolated from the type strain of T. domesticum. The fractions contained O-acetyl groups, which contributed to the serological reactivity. The antigenic structure was characterized by chromatographic and spectroscopic methods. The polysaccharide has an α-(1→3)- -mannan backbone with hetero-oligosaccharide side chains consisting of a 2-O-substituted β- -glucuronic acid residue bound to O-2 of the mannose residue, β- -xylopyranosyl residues located in the middle of the side chain, and a nonreducing terminal α- -arabinopyranosyl residue bound to O-4 of xylose. The mannan backbone is O-acetylated at O-6 of the mannose residues.  相似文献   

2.
The alkali extractable and water-soluble cell wall polysaccharides F1SS from Aspergillus wentii and Chaetosartorya chrysella have been studied by methylation analysis, 1D- and 2D-NMR, and MALDI-TOF analysis. Their structures are almost identical, corresponding to the following repeating unit: [→ 3)-β-D-Galf-(1 → 5)-β-D-Galf-(1 →] n → mannan core. The structure of this galactofuranose side chain differs from that found in the pathogenic fungus Aspergillus fumigatus, in other Aspergillii and members of Trichocomaceae: [→ 5)-β-D-Galf-(1 →] n → mannan core. The mannan cores have also been investigated, and are constituted by a (1 → 6)-α-mannan backbone, substituted at positions 2 by chains from 1 to 7 residues of (1 → 2) linked α-mannopyranoses. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
One major polysaccharide fractions, glucose, were isolated from the polysaccharides extract of Astragalus (AP), a valuable traditional Chinese medicine, using thin-layer chromatography (TLC) and Sephadex G-100 chromatography. HPLC and IR methods were used for a qualitative and quantitative determination of from polysaccharides of Astragalus. The HPLC method was validated for linearity, precision and accuracy. The results indicated that polysaccharides of Astragalus is an α-(1 → 4)-d-glucan with α-(1 → 6)-linked branches attached to the O-6 of branch points. Bioactivity tests showed that polysaccharides of Astragalus is active for spleen lymphocytes proliferation. The polysaccharides also presented anti-inflammatory activities. These data together suggest that polysaccharides of Astragalus presents significant immune modulating activity, thus supporting the popular use of the polysaccharides in the treatment of gastric cancer diseases.  相似文献   

4.
Results of molecular studies regarding the phylogenetic placement of the order Ostropales and related taxa within Lecanoromycetes were thus far inconclusive. Some analyses placed the order as sister to the rest of Lecanoromycetes, while others inferred a position nested within Lecanoromycetes. We assembled a data set of 101 species including sequences from nuLSU rDNA, mtSSU rDNA, and the nuclear protein-coding RPB1 for each species to examine the cause of incongruencies in previously published phylogenies. MP, minimum evolution, and Bayesian analyses were performed using the combined three-region data set and the single-gene data sets. The position of Ostropales nested in Lecanoromycetes is confirmed in all single-gene and concatenated analyses, and a placement as sister to the rest of Lecanoromycetes is significantly rejected using two independent methods of alternative topology testing. Acarosporales and related taxa (Acarosporaceae group) are basal in Lecanoromycetes. However, if the these basal taxa are excluded from the analyses, Ostropales appear to be sister to the rest of Lecanoromycetes, suggesting different ingroup rooting as the cause for deviating topologies in previously published phylogenies.  相似文献   

5.
Each of the cell walls of four representatives of the genus Kribbella (order Actinomycetales; suborder Propionibacterineae; family Nocardioidaceae) contains a neutral polysaccharide and an acidic polysaccharide with unusual structures. Common to all four strains studied is a mannan with the following repeating unit: In the cell wall of the strain VKM Ac-2541, a teichulosonic acid was identified with a monosaccharide component that has not hitherto been found in Gram-positive bacteria, viz., pseudaminic acid, and an unusual linkage type in the polymeric chain,

where R = Н (45%), α-d-Galp3OMe (37%) or α-d-Galp2,3OMe (18%).The anionic cell wall components of three other strains are represented by teichuronic acids with a rare constituent, viz., a diaminosugar, 2,3-diacetamido-2,3-dideoxyglucopyranose. The structures of their repeating units differ in the nature of the acidic components:→4)-β-d-Manp2,3NAcA-(1→6)-α-d-Glcp2,3NAc-(1→ (VKM Ас-2538 and VKM Ас-2540) and →4)-β-d-ManpNAcA-(1→6)-α-d-Glcp2,3NAc-(1→ (VKM Ас-2539).The structures of all the glycopolymers were established by chemical and NMR spectroscopic methods; they are identified in Gram-positive bacteria for the first time.  相似文献   

6.
An acidic heteropolysaccharide has been isolated from the tropical angiosperm Feronia limonia syn. F. elephantum (family: Rutaceae). A partially carboxymethylated α-(1–4) polygalacturonan backbone structure with 2- and 2,4-O-α- -rhamnopyranosyl, 2- and 2,3-O-α- -arabinofuranosyl and 3-, 2,4-and terminal α- -galactopyranosyl bearing side chains has been tentatively assigned. The preliminary study in the murine model showed some significant in vivo Ehrlich ascites carcinoma cell growth inhibition.  相似文献   

7.
A novel polysaccharide designated EPS-1A with an average molecular weight around 40 kDa was fractionated and purified by anion-exchange and gel-filtration chromatography from the crude exopolysaccharide (EPS) isolated from fermentation broth of Cs-HK1, a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. The structural characteristics of EPS-1A were determined with various methods (e.g. GC, GC–MS, FT-IR, 1H NMR and 13C NMR) and through acid hydrolysis, methylation, periodate-oxidation and Smith degradation. The results suggested that EPS-1A was composed of glucose, mannose and galactose at 15.2:3.6:1.0 M ratio. EPS-1A was a slightly branched polysaccharide and its backbone was composed of (1 → 6)-α-d-glucose residues (77%) and (1 → 6)-α-d-mannose residues (23%). Branching occurred at O-3 position of (1 → 6)-α-d-mannose residues of the backbone with (1 → 6)-α-d-mannose residues and (1 → 6)-α-d-glucose residues, and terminated with β-d-galactose residues.  相似文献   

8.
Sulfated fucans, the complex polysaccharides from brown seaweeds, possess various biological activities. To understand the structure activity relationship of sulfated fucans, we have investigated the structural features of one such polymer from Padina tetrastromatica using standard methods of carbohydrate structural analysis. We report a novel structural motif for this polymer. The average structure of this macromolecule that has a molecular mass of 25 kDa differs from the previous models in three respects. First, the core region of this macromolecule is composed primarily of α-(1 → 2)- and α-(1 → 3)-linked fucopyranosyl residues. Sulfate groups, when present are located at position 4 and 2 of fucosyl residues. Secondly, fucose and xylose is attached to this polymer to form branch points, one for every two residues within the chain. Finally, this macromolecule contained smaller amount of sulfate (0.21 mol of sulfate per mol of deoxyhexose).  相似文献   

9.
An extracellular polysaccharide producing bacterium Zoogloea sp. was isolated from an agro-industrial environment in the north-eastern region of Brazil. The extracellular polysaccharide produced from sugarcane molasses was hydrolysed with trifluoroacetic acid (mild and strong conditions) giving 88% of soluble material. The main monosaccharides present in the soluble fraction were glucose (87.6%), xylose (8.6%), mannose (0.8%), ribose (1.7%), galactose (0.1%), arabinose (0.4%) and glucuronic acid (0.8%). Methylation analysis of the polysaccharide showed mainly 2,3,6-tri-O-methylhexitol (74.7%) and 2,3,-di-O-methylhexitol (17.7%). Enzyme hydrolysis of the polysaccharide with a cellulase confirmed the presence of (1→4)-β- -glucopyranosyl residues.  相似文献   

10.
In the present study phylogenetic relationships of the genus Stereocaulon (lichenized ascomycetes) were examined using DNA sequences from the ITS1–5.8 S–ITS2 rDNA gene cluster and from the protein-coding β-tubulin gene. In addition to the fruticose species traditionally classified in Stereocaulon, representatives of the crustose species that have recently been transferred to the genus were included. Muhria, a monotypic genus that is morphologically similar to Stereocaulon, differing only in apothecia ontogeny, was also incorporated. The analyses included 101 specimens from the ingroup representing 49 taxa. Sequences from both DNA regions were analysed simultaneously using direct optimization under the parsimony optimality criterion. The results support the inclusion of the crustose species and Muhria in Stereocaulon, while the current infrageneric classification is not supported. As Muhria is securely nested within Stereocaulon the new combination Stereocaulon urceolatum comb. nov. (syn. Muhria urceolata) is made. Further, species concepts need to be re-examined, as some species do not appear as monophyletic entities in the phylogeny.  相似文献   

11.
The O-specific polysaccharide (O-antigen) structure of a Shigella flexneri type 4a strain from the Dysentery Reference Laboratory (London, UK) was elucidated in 1978 and its characteristic feature was found to be α-d-glucosylation of GlcNAc at position 6, which defines O-factor IV. Our NMR spectroscopic studies of the O-specific polysaccharides of two other strains belonging to S. flexneri type 4a (G1668 from Adelaide, Australia, and 1359 from Moscow, Russia) confirmed the carbohydrate backbone structure but revealed in both strains an additional component, ethanolamine phosphate (EtnP), attached at position 3 of one of the rhamnose residues:

Phosphorylation has not been hitherto reported in any S. flexneri O-antigen. Reinvestigation of the O-specific polysaccharide of S. flexneri type 4b showed that it is not phosphorylated and confirmed its structure established earlier.  相似文献   

12.
Glycoproteins secreted by the yeast Kluyveromyces lactis are usually modified by the addition at asparagines-linked glycosylation sites of heterogeneous mannan residues. The secreted glycoproteins in K. lactis that become hypermannosylated will bear a non-human glycosylation pattern and can adversely affect the half-life, tissue distribution and immunogenicity of a therapeutic protein. Here, we describe engineering a K. lactis strain to produce non-hypermannosylated glycoprotein, decreasing the outer-chain mannose residues of N-linked oligosaccharides. We investigated and developed the method of two-step homologous recombination to knockout the OCH1 gene, encoding α1,6-mannosyltransferase and MNN1 gene, which is homologue of Saccharomyces cerevisiae MNN1, encoding a putative α1,3-mannosyltransferase. We found the Kloch1 mutant strain has a defect in hyperglycosylation, inability in adding mannose to the core oligosaccharide. The N-linked oligosaccharides assembled on a secretory glycoprotein, HSA/GM–CSF in Kloch1 mutant, contained oligosaccharide Man13–14GlcNAc2, and in Kloch1 mnn1 mutant, contained oligosaccharide Man9–11GlcNAc2, whereas those in the wild-type strain, consisted of oligosaccharides with heterogeneous sizes, Man>30GlcNAc2. Taken together, these results indicated that KlOch1p plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in K. lactis. The KlMnn1p, was proved to be certain contribution to the outer hypermannosylation, most possibly encodes α1,3-mannosyltransferase. Therefore, the Kloch1 and Kloch1 mnn1 mutants can be used as a foundational host to produce glycoproteins lacking the outer-chain hypermannoses and further maybe applicable to be a promising system for yeast therapeutic protein production.  相似文献   

13.
Four xanthone O-glycosides, polygalaxanthones IV–VII were isolated from the roots of Polygala tenuifolia Willd., together with eight known compounds. The structures of the four xanthone O-glycosides were established as 6-O-[α- -rhamnopyranosyl-(1→2)-β- -glucopyranosyl]-1-hydroxy-3,7-dimethoxyxanthone (polygalaxanthone IV), 6-O-[α- -rhamnopyranosyl-(1→2)-β- -glucopyranosyl]-1,3-dihydroxy-7-methoxyxanthone (polygalaxanthone V), 6-O-(β- -glucopyranosyl)-1,2,3,7-tetramethoxyxanthone (polygalaxanthone VI), and 3-O-[α- -rhamnopyranosyl-(1→2)-β- -glucopyranosyl]-1,6-dihydroxy-2,7-dimethoxyxanthone (polygalaxanthone VII), respectively, on the basis of analysis of spectroscopic evidence.  相似文献   

14.
15.
The alkali-extractable and water-soluble fungal polysaccharide F1SS isolated from the cell wall of Acrospermum compressum has been studied by methylation analyses, reductive cleavage and 1D- and 2D-NMR spectroscopy. The polysaccharide consists of a regular disaccharide repeating unit with the structure: The mannan core was obtained by mild hydrolysis of the polysaccharide F1SS and its structure was deduced to be composed of a skeleton of α-(1→6)-mannopyranan, with around 1 out of 11 residues substituted at position 2 by short chains (one to six units) of 2-substituted mannopyranoses. DOSY experiments provided molecular sizes of 60 kDa and 2.5 kDa for the polysaccharide F1SS and the mannan core, respectively. This is the first report of a fungal mannofuranose-containing cell wall polysaccharide.  相似文献   

16.
A haloalkalophilic Halomonas strain CRSS, isolated from salt sediments in Antarctica, produced exocellular polysaccharides (EPS) up to 2.9gg-1 dry cells. Acetate was the most efficient carbon source for EPS production. The composition of media strongly affected the nature of the polymers; a mannan and a xylo-mannan, were obtained when cells were grown on complex media. Acetate was the most efficient carbon source for EPS production and in presence of this substrate, a new polysaccharide, a fructo-glucan, was produced. The EPS fraction was composed by glucose, fructose, glucosamine and galactosamine in relative proportions of 1:0.7:0.3:trace.Revisions requested; Revisions received 6 September 2004  相似文献   

17.
A new saponin, leucasin, has been isolated from Leucas nutans and characterized on the basis of chemical investigation and spectroscopic studies as 3-O-[β- -glucopyranosyl(1→2)β- -glucopyranosyl]2α,3β-dihydroxylup-20(29)-ene. Lupeol palmitate, sitosterol and stigmasterol were also isolated.  相似文献   

18.
A water-soluble polysaccharide named as PRP was isolated from the fruiting bodies of Phellinus ribis by hot water extraction, DEAE-cellulose and Superdex 30 column chromatography. Its structural characteristics were investigated by FT-IR, NMR spectroscopy, GLC-MS, methylation analysis, periodate oxidation and Smith degradation. Based on the data obtained, PRP was found to be a β-d-glucan containing a (1 → 4), (1 → 6)-linked backbone, with a single β-d-glucose at the C-3 position of (1 → 6)-linked glucosyl residue every eight residues, along the main chain. The glucan has a weight-average molecular weight of about 8.59 kDa by HPGPC determination using dextran samples as the standards. Preliminary activity tests in vitro revealed that PRP could stimulate the proliferation of spleen lymphocyte.  相似文献   

19.
A study was made of polysaccharides and glycosphingolipids isolated from Aspergillus fumigatus grown in media supplemented with human serum from healthy donors. Fractionation of Cetavlon-precipitated polysaccharides on Sephacryl S-400 gave rise to an excluded fraction (Fraction I) with molecular weight of >400 kDa and an included peak (Fraction II) with an average molecular weight of 30–80 kDa. Fraction I comprises about 5% of total polysaccharide and was identified as a glycogen-like molecule. Its structure was deduced from methylation data, treatment with amyloglucosidase, a red-brown coloration produced with an iodine solution and by 1H and 13C-NMR spectroscopy. It was previously suggested that higher amounts of glycogen-like polysaccharide (20%) were present in A. fumigatus grown in serum-free medium. Fraction II was identified as a galactomannan and was the main polysaccharide of A. fumigatus grown in serum-supplemented medium. Its structure was elucidated mainly by 13C-NMR spectroscopy combined with partial acetolysis and methylation analysis. The 13C-NMR spectrum of the galactomannan showed a much greater complexity in the -d-galf and -d-manp C-1 regions, than was evident for galactomannan from serum-free cultures previously described, reflecting differences in the glycosylation pattern, stimulated in serum-supplemented medium.No differences in A. fumigatus glycosphingolipid could be detected between serum-containing and serum-free growth conditions.Our results demonstrate that the change in polysaccharide structure is a more specific response to the altered growth conditions and not merely a symptom of more general changes.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

20.
During the last decade brown seaweeds attracted much attention as a source of polysaccharides, namely laminarans, alginic acids, and sulfated polysaccharides—fucoidans, with various structures and biological activities.In this study, sulfated polysaccharides were isolated from brown seaweeds Saccharina japonica (formerly named Laminaria) and Undaria pinnatifida and their antitumor activity was tested against human breast cancer T-47D and melanoma SK-MEL-28 cell lines.The sulfated polysaccharide form S. japonica was highly branched partially acetylated sulfated galactofucan, built up of (1→3)-α-l-fucose residues. The sulfated polysaccharide from U. pinnatifida was partially acetylated highly sulfated galactofucan consisting of (1→3)- or (1→3);(1→4)-α-l-fucose residues.Fucoidans from S. japonica and U. pinnatifida distinctly inhibited proliferation and colony formation in both breast cancer and melanoma cell lines in a dose-dependent manner. These results indicated that the use of sulfated polysaccharides from brown seaweeds S. japonica and U. pinnatifida might be a potential approach for cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号