首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of salicylic acid on nitrate reductase activity in maize seedlings   总被引:2,自引:0,他引:2  
The effect of different concentrations of salicylic acid on total Kjeldahl nitrogen and nitrate reductase activity in the maize ( Zea mays L.) seedling was studied. The total nitrogen of the maize embryonic axis (root + shoot) from seedlings raised with 10 m M Ca(NO3)2 for 5 days was substantially higher than that from the control when 0.01 m M salicylic acid was supplied. As supply of high (1 m M ) concentrations of salicylic acid decreased the accumulation of organic nitrogen. The in vivo activity of nitrate reductase in the roots increased at low concentrations of salicylic acid, while high concentrations were inhibitory. The stimulative concentration of the acid protected in vivo loss of nitrate reductase activity under non-inducing conditions, whereas it had no effect on in vitro loss of enzyme. It is suggested that salicylic acid increases in vivo enzyme activity indirectly, to some extent by protecting the natural inactivation of the enzyme.  相似文献   

2.
Properties of glutamate dehydrogenase from developing maize endosperm   总被引:2,自引:0,他引:2  
Glutamate dehydrogenase (EC 1.4.1.3) activity was assayed in homogenates of maize ( Zea mays L. inbred lines Oh43 and Oh43o2) endosperm during development. During the period 20–35 days after pollination anabolic (aminative) activities were higher than catabolic (deaminating) ones. In order to study the regulation of GDH activity, glutamine or glutamate were injected into the ear peduncle before sample harvesting. The amination and deamination reactions showed similar behaviour with different nitrogen sources: glutamine increased, whereas glutamate decreased, both aminative and deaminative reactions. Partially purified enzyme was active with NADH and NADPH in a ratio 9:1. In Tris-HCl buffer a broad optimum at pH 7.6–8.9 and pH 6.8–8.9 was observed with NADH and NADPH, respectively, NADH activity was activated by Ca2+. Saturation curves for (NH4)2SO4 and NADH showed normal Michaelis-Menten kinetics in the presence of 1 m M Ca2+, but substrate inhibition occurred without Ca2+. The enzyme was inactivated by EDTA. The effect of EDTA was reversed by Ca2+ and Mn2+, but not by Cu2+ and Mg2+.  相似文献   

3.
Root or secondary leaf segments from maize ( Zea mays L. cv. Ganga safed-2) seedlings were incubated with 9-amino acids and two amides separately, each at 5 m M for 24 h, to study their effects on glutamate dehydrogenase (GDH) activity. Most of the compounds tested inhibited the specific activity of NADH-GDH and increased that of NAD+-GDH in the roots in the presence as well as in the absence of ammonium. In the leaves, such effects were recorded only with a few amino acids. Total soluble protein in the root and leaf tissues increased with the supply of most of the amino compounds. The effect of glutamate on enzyme activity and protein was concentration dependent in both tissues. When the enzyme extracts from root or leaf tissues were incubated with some of the amino acids, NADH-GDH declined while NAD+-GDH increased in most cases. The inhibition of NADH-GDH increased with increasing concentration of cysteine from 1 to 5 m M . The experiments demonstrate that most of the amino acids regulated GDH activity, possibly through some physicochemical modulation of the enzyme molecule.  相似文献   

4.
The effects of exogenous sucrose, lactose, d -glucose, d (-)fructose, d -galactose, d -mannose, l -sorbose, l -arabinose and d -xylose on nitrate reductase (NR), glutamine synthetase (GS) and glutamate dehydrogenase (GDH) levels, on anaerobic nitrite production and on respiratory O2 consumption were studied in excised roots of pea (Pisum sativum L. cv. Raman). Sucrose, glucose and fructose increase NR and GS levels and decrease GDH level (when compared with roots cultures without any sugar) at all concentrations used, but the extent of this effect varies. NR induction is enhanced by all sugars within the concentration range studied. Precultivation of roots with mannose and galactose results in an increase in anaerobic nitrite production in a medium consisting of phosphate buffer and KNO3. GS reaches its maximum at lower sugar concentrations, this fact being especially clear-cut with galactose. The decrease in GS level observed in roots cultured without sucrose is enhanced by higher sorbose concentrations. The increase in GDH level occurring in roots cultured without sucrose is depressed by low galactose and mannose concentrations but enhanced by high galactose, mannose, xylose and a wide range of sorbose concentrations. Lactose exerts only slight influence on the enzymes. The effects of sugars are in no case consistent with their effect on respiratory O2 consumption which is most pronounced with NR. The above results show that the effects of sugars on NR, GS and GDH are not mediated by one universal mechanism.  相似文献   

5.
The effects of decreased irradiance on fresh and dry weight, root respiration, levels of carbohydrates and N-compounds, and extractable activities of enzymes involved in C and N metabolism were evaluated in maize ( Zea mays L. cv. Plauto) seedlings during the 7 days following transfer from 450 to 200 μmol m−2 s−1 PAR. The fresh weight of roots and stems, the initiation of new leaves, root respiration rate, and the accumulation of dry matter, soluble sugars, starch, malate and amino acids in both leaves and roots were strongly reduced at low irradiance. In contrast, the level of nitrate was increased in leaves and only marginally affected in roots. Leaf phosphoenolpyruvate carboxylase (EC 4.1.1.31) activity started to decrease after 24–34 h, whereas ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) activity and chlorophyll content were unaffected or only slightly reduced. In both leaves and roots, the adjustment of N metabolism to low irradiance occurred through a relatively rapid (30% after 10 h) and large (60% after 3 days) decrease of nitrate reductase (NR; EC 1.6.6.1) activity, followed by slower and smaller changes in the activity of nitrite reductase (EC 1.7.7.1), glutamine synthetase (EC 6.3.1.2) and NAD-dependent glutamate dehydrogenase (EC 1.4.1.2). We suggest that the preferential decrease of NR activity relative to other N-assimilating enzymes may be important for preventing the accumulation of toxic N-compounds like ammonia in both leaf and root tissues.  相似文献   

6.
Elongation, indolyl-3-acetic acid (IAA) and abscisic acid (ABA) levels, – gas chromatography-mass spectrometry quantification –, in the elongating zone were analysed for maize ( Zea mays L., Cv. LG11) roots immersed in buffer solution with or without zeatin (Z). The effect of Z depends on the initial extension rate of roots. The slower growing roots are more strongly inhibited by Z (10−7−10−5 M ) and they show a greater increase in IAA and ABA content. When compared to the rapidly growing roots, the larger reactivity of the 'slow'ones cannot be attributed to a higher Z uptake as shown when using [14C]-Z. It is suggested that Z could regulate root elongation by acting on the IAA and/or ABA level. The comparative action of these two hormones is discussed.  相似文献   

7.
Mesophyll and bundle sheath cells of maize leaves ( Zea mays L.) both contain the enzymes ascorbate peroxidase (AP; EC 1.11.1.11) and glutathione reductase (GR; EC 1.6.4.2) which are involved in hydrogen peroxide detoxification. Since bundle sheath cells of maize are deficient in photosystem II and have high CO2 levels, oxidative stress may be less severe in these cells than in mesophyll cells. The present study was conducted to determine if AP and GR activity levels preferentially increase in mesophyll cells relative to bundle sheath cells when plants are subjected to moderate drought. Although drought inhibited the growth of greenhouse-grown plants, it did not affect the levels of protein, chlorophyll or AP. GR was unaffected by drought in whole leaf tissue and mesophyll cells, but did increase slightly in bundle sheath cells. This slight increase is of questionable biological importance. AP and GR activity levels were similar in mesophyll cells, bundle sheath cells and in whole leaf tissue. The data suggest that moderate drought has little effect on enzymes of the hydrogen peroxide scavenging system and that mesophyll and bundle sheath cells may be exposed to similar levels of hydrogen peroxide.  相似文献   

8.
Stress induction of abscisic acid in maize roots   总被引:11,自引:0,他引:11  
Moderate water stresses in the range 0 to −0.6 MPa applied with PEG 6000 to excised roots of Zea mays L. var. LG 11 induced increases of up to four-fold in the amount of abscisic acid (ABA) determined in the tissue after a 12 h period of xylem exudation. The ABA concentration of xylem exudate collected after a 2 h water stress also increased by up to four-fold. Salt stresses, induced with NaCl solutions, resulted in similar increases in the ABA concentrations. ABA concentrations in both root tissue and xylem exudate were highest 4 h after removal of the stress and then declined over a subsequent 8 h period. These results are interpreted in support of the concept that root-produced ABA may have a role in the fine control of the plant's water balance.  相似文献   

9.
Accumulation of ABA in maize roots in response to root severing   总被引:3,自引:0,他引:3  
  相似文献   

10.
Total activities of nitrate and nitrite reductases were higher in 4 to 20 day old maize plants in the leaves than in the roots. The ratio of activities found in the leaves and in the roots respectively was much higher in the case of nitrate reductase than in the case of nitrite reductase. On the other hand higher glutamate dehydrogenase activity in the roots than in the leaves clearly indicates that the roots play a more important role in the assimilation of ammonium than in the assimilation of nitrate. When comparing the distribution of seminal and nodal adventitious roots of maize seedlings with the assimilation of inorganic nitrogen on the basis of enzyme levels, it could be deduced that during the first 20 days of seedling growth seminal roots were more involved in the assimilation of nitrate whereas nodal adventitious roots were more active in ammonium assimilation.  相似文献   

11.
The activity of the enzyme 3-hydroxy-3-methlglutaryl-coenzyme A reductase (HMGR, EC 1.1.1.34) is highly expressed in 4-day-old etiolated seedlings of normal (cv. DeKalb XL72AA), dwarf ( d 5) and albino ( lw 3) maize ( Zea mays L.). HMGR activity of maize seedlings appeared to be exclusively associated with the microsomal rather than the plastidic fraction of maize cells. Maize tissues with high meristematic activity such as germinating seeds, leaf bases, root tips and the site of origin of lateral roots contained high levels of microsomal HMGR activity. The activity of HMGR extracted from leaf tips of normal, dwarf and albino maize seedlings is regulated by light. Microsomal HMGR activity from leaf tips of 4-day-old maize seedlings was inhibited significantly following exposure to strong light (600 μmol m−2 s−1) for more than 10 h. By comparison, microsomal HMGR activity from leaf bases and root tips of maize was not inhibited by exposure to strong light. These results suggest that the microsomal HMGR which is highly expressed in maize may be related to sterol biosynthesis and membrane biogenesis rather than plastidic-associated isoprenoid synthesis and that light may regulate HMGR activity indirectly by increasing cell differentiation.  相似文献   

12.
Plasma membranes from corn roots (Zea mays L.) were isolated by aqueous two-phase partitioning. A fraction enriched in a vanadate-sensitive ATPase showed characteristics of a plasma membrane ATPase. The sidedness of these vesicles was 89% right-side-out, as evaluated by the ATPase latency. A NADH-ferricyanide reductase was associated with these plasma membrane vesicles. The rate of ferricyanide reduction was 1.3 μmol · min−1·mg−1 protein and was strongly enhanced by the addition of lysophosphatidylcholine (LPC). The effect of this detergent on membrane solubilization and reductase activity was particularly studied. This type of detergent treatment revealed two pH optima (7.0 and 5.0) for the reductase activity, which exhibited biphasic kinetics in the absence or presence of the detergent. These data suggest that two or more reductases could be involved. In addition, membrane vesicle solubilization and determination of ATPase and reductase latency were simultanously studied. From these experiments, it is postulated that the reductase, which exhibits an optimum pH at 7.0 and is slightly stimulated by LPC, could be located on the external side of the plasmalemma. In contrast, the reductase at pH 5.0 strongly stimulated by the detergent treatment, is probably located on the internal side of the membrane, such as the catalytic site of ATPase. Finally, a possible direct action of LPC on the enzymes, is discussed.  相似文献   

13.
Under water stress conditions, induced by mannitol solutions (0 to 0.66 M ) applied to the apical 12 mm of intact roots of Zea mays L. (cv. LG 11), a growth inhibition, a decrease in the osmotic potential of the cell sap and a significant accumulation of abscisic acid (ABA) were observed. When the roots were placed in a humid atmosphere after the stress, the growth rate increased again, even if elongation had been totally inhibited. Under a stress corresponding to an osmotic potential of -1.09 MPa in the solution, growth was totally inhibited, which means that the root cell turgor pressure was reduced to the yield threshold. These conditions led to the largest accumulation of ABA. The effect of water stress on the level of ABA was studied for three parts of the root. The greatest increase in ABA (about 10 fold) was obtained in the growth zone and this increase was apparently independent of the hydrolysis of the conjugated form. With a mannitol treatment of 1 h equivalent to a stress level of -1.39 MPa, a 4-fold increase in ABA efflux into the medium was obtained. These results suggest that there are interactions between water stress, root growth, osmotic potential and the ABA level. The growth under conditions of stress and the role of endogenous ABA in the control of plant metabolism, specially in the growth zone, are discussed.  相似文献   

14.
Millet, B. and Pickard, B. G. 1988. Early wrong-way response occurs in orthogravitropism of maize roots treated with lithium. - Physiol. Plant. 72: 555–559.
Application of lithium ions to tips of roots of Zea mays L. cv. Silver Queen shifts the direction of initial orthogravitropic curvature from downward to upward. The production of this putatively incidental perturbation of orthogravitropic bending kinetics by a pharmacological agent might provide insight into both ortho- and plagiogravitro-pism. Additionally, the protocol of the experiments bears on recent claims that mucilage external to the root cap plays an essential role in gravitropism. External mucilage was removed before roots were stimulated, yet they reached about 50 degrees gravitropic curvature in an hour.  相似文献   

15.
Abstract. Maize plants were grown in 1-m-long tubes of John Innes No. 2 potting compost. From the start of the experimental period, half of the plants were unwatered. Stomatal conductance of these plants was restricted 6 d after last watering and continued to decline thereafter. This was despite the fact that as a result of solute accumulation, unwatered plants showed consistently higher leaf turgors than well-watered plants. Leaf water potentials of unwatered plants were not significantly lower than those of plants that were watered well. Main seminal and nodal roots showed solute regulation in drying soil and continued to grow even in the driest soil, and plants growing in drying soil showed consistently higher root dry weights than did well-watered plants, water potentials and turgors of the tips of fine roots in the upper part of the column decreased as the soil dried. Soil drying below a water content of around 0–25 g cm−3 (a bulk soil water potential of between -0.2 and -0.3 MPa) resulted in a substantial increase in the ABA content of roots. As soil columns dried progressively from the top, ABA content increased in roots deeper and deeper in the soil. These responses suggest that ABA produced by dehydrating roots and which was subsequently transported to the shoots provided a sensitive indication of the degree of soil drying.  相似文献   

16.
Kenneth W. Joy 《Phytochemistry》1973,12(5):1031-1040
-Glutamate dehydrogenase (GDH) was found in soluble and particulate (mitochondrial) fractions of pea roots. The activity of NADH-dependent GDH in fresh mitochondrial extract was increased about 10-fold by addition of zinc, manganese or calcium, but high concentrations of zinc were inhibitory. During storage, GDH activity of the mitochondrial extract slowly increased. The NADH activity was inhibited by citrate and other chelating agents. NADH-dependent reductive amination was also inhibited by glutamate, the product of the reaction; by contrast NADPH dependent activity was relatively unaffected by zinc, chelating agents or glutamate. Sensitivity (of NADH-GDH) to glutamate was lost on purification, but was restored when the enzyme was immobilized by binding to an insoluble support (AE cellulose). Glutamate appears to change the affinity of the enzyme for 2-oxoglutarate.  相似文献   

17.
Summary Plasma membranes were isolated and purified from 14-day-old maize roots (Zea mays L.) by two-phase partitioning at a 6.5% polymer concentration, and compared to isolated mitochondria, microsomes, and soluble fraction. Marker enzyme analysis demonstrated that the plasma membranes were devoid of cytoplasmic, mitochondrial, tonoplast, and endoplasmic-reticulum contaminations. Isolated plasma membranes exhibited malate dehydrogenase activity, catalyzing NADH-dependent reduction of oxaloacetate as well as NAD+-dependent malate oxidation. Malate dehydrogenase activity was resistant to osmotic shock, freeze-thaw treatment, and salt washing and stimulated by solubilization with Triton X-100, indicating that the enzyme is tightly bound to the plasma membrane. Malate dehydrogenase activity was highly specific to NAD+ and NADH. The enzyme exhibited a high degree of latency in both right-side-out (80%) and inside-out (70%) vesicle preparations. Kinetic and regulatory properties with ATP and Pi, as well as pH dependence of plasma-membrane-bound malate dehydrogenase were different from mitochondrial and soluble malate dehydrogenases. Starch gel electrophoresis revealed a characteristic isozyme form present in the plasma membrane isolate, but not present in the soluble, mitochondrial, and microsomal fractions. The results presented show that purified plasma membranes isolated from maize roots contain a tightly associated malate dehydrogenase, having properties different from mitochondrial and soluble malate dehydrogenases.Abbreviations FCR ferricyanide reductase - MDH malate dehydrogenase  相似文献   

18.
The relationship between ethylene production, 1-aminocyclopropane-l-carboxylic acid (ACC) concentration and aerenchyma formation (ethylene-promoted cavitation of the cortex) was studied using nodal roots of maize (Zea mays L. cv. LG11) subjected to various O2 treatments. Ethylene evolution was 7–8 fold faster in roots grown at 3 kPa O2 than in those from aerated solution (21 kPa O2), and transferring roots from aerated solution to 3 kPa O2 enhanced ethylene synthesis within less than 2 h. Ethylene production and ACC accumulation were closely correlated in different zones of hypoxic roots, regardless of whether O2 was furnished to the roots through aerenchyma or external solution. Both ethylene production and ACC concentrations (fresh weight basis) were more than 10-fold greater in the distal 0–10 mm than in the fully expanded zone of roots at 3 kPa O2. Aerenchyma formation occurred in the apical 20 mm of these roots. Roots transferred from air to anoxia accumulated less than 0. 1 nmol ACC (mg protein)-1 for the first 1.75 h; no ethylene was produced in this time. The subsequent rise in ACC levels shows that ACC can reach high concentrations even in the absence of O2, presumably due to a de-repression of ACC synthase. The hypothesis was therefore tested that anoxia in the apical region of the root caused enhanced synthesis of ACC, which was transported to more mature regions (10–20 mm behind the apex), where ethylene could be produced and aerenchyma formation stimulated. Surprisingly, exposure of intact root tips to anoxia inhibited aerenchyma formation in the mature root axis. High osmotic pressures around the growing region or excision of apices had the same effect, demonstrating that a growing apex is required for high rates of aerenchyma formation in the adjacent tissue.  相似文献   

19.
Roots and leaves of Zea mays L. cv. Ganga Safed-2 seedlings grown with nutrient solution containing either 10 m M KNO3 or NH4Cl or 5 m M NH4NO3 had considerably higher glutamate synthase (NADH, EC 1.4.1.14) activity than the corresponding organs from seedlings grown without any nitrogen. The supply of inorganic nitrogen for a short time, i.e. 3 h, to roots and leaves excised from seedlings grown without nitrogen also increased the enzyme activity in these organs. This increase was more pronounced with nitrate than with ammonium nitrogen. When excised roots and leaves from NH4NO3-grown seedlings were incubated in a minus nitrogen medium for 24 h, the enzyme activity declined considerably. This decline was inhibited to some extent by nitrogen, especially by nitrate. Inorganic nitrogen prevented similarly the decline in in vitro enzyme activity during 24 h storage at 25°C, more regularly for the root than for the leaf enzyme. The experiments demonstrate the role of inorganic nitrogen in the regulation of glutamate synthase activity.  相似文献   

20.
The distribution of nitrite reductase (EC 1.7.7.1) and sulfite reductase (EC 1.8.7.1) between mesophyll ceils and bundle sheath cells of maize ( Zea mays L. cv. Seneca 60) leaves was examined. This examination was complicated by the fact that both of these enzymes can reduce both NO-2 and SO2-3 In crude extracts from whole leaves, nitrite reductase activity was 6 to 10 times higher than sulfite reductase activity. Heat treatment (10 min at 55°C) caused a 55% decrease in salfite reductase activity in extracts from bundle sheath cells and mesophyll cells, whereas the loss in nitrite reductase activity was 58 and 82% in bundle sheath cells and mesophyll cell extracts, respectively. This result was explained, together with results from the literature, by the hypothesis that sulfite reductase is present in both bundle sheath cells and mesophyll cells, and that nitrite reductase is restricted to the mesophyll cells. This hypothesis was tested i) by comparing the distribution of nitrite reductase activity and sulfite reductase activity between bundle sheath and mesophyll cells with the presence of the marker enzymes ribulose-l, 5-bisphosphate carboxylase (EC 4.1.1.39) and phosphoe-nolpyruvate carboxylase (EC 4.1.1.32), ii) by examining the effect of cultivation of maize plants in the dark without a nitrogen source on nitrite reductase activity and sulfite reductase activity in the two types of cells, and iii) by studying the action of S2-on the two enzyme activities in extracts from bundle sheath and mesophyll cells. The results from these experiments are consistent with the above hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号