首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we report the molecular cloning of the chicken (Gallus gallus) neuropeptide Y (NPY) receptor Y2, the first non-mammalian Y2 receptor. It displays 75-80% identity to mammalian Y2 and has a surprisingly divergent cytoplasmic tail. Expression of the receptor protein in a cell line showed that the receptor did not bind the mammalian Y2 selective antagonist BIIE0246. Furthermore, porcine [Leu(31), Pro(34)]NPY, which binds poorly to mammalian Y2, exhibited an unexpectedly high affinity for chicken Y2. In situ hybridisation revealed expression in the hippocampus. Thus, the chicken Y2 receptor exhibits substantial differences with regard to sequence and pharmacological profile in comparison to mammalian Y2 receptors, while the expression pattern in the central nervous system resembles that observed in mammals.  相似文献   

2.
The involvement of Neuropeptide Y (NPY) in the pathophysiology of mood disorders has been suggested by clinical and preclinical evidence. NPY Y1 and Y2 receptors have been proposed to mediate the NPY modulation of stress responses and anxiety related behaviors. To further investigate the role of Y2 receptors in anxiety we studied the effect of BIIE0246, a selective Y2 receptor antagonist, in the elevated plus-maze test. Rats treated with 1.0 nmol BIIE0246 showed an increase in the time spent on the open arm of the maze. In addition, to study the effects of the Y2 antagonism on NPY protein level, NPY-like immunoreactivity was measured in different brain regions following treatment with BIIE0246, but no statistically significant effects were observed. These results suggest that BIIE0246 has an anxiolytic-like profile in the elevated plus-maze.  相似文献   

3.
Malmström RE 《Life sciences》2001,69(17):1999-2005
The effects of the first selective, non-peptide, NPY Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamid (BIIE0246) were studied on splenic vascular responses evoked in the pig in vivo. BIIE0246 abolished the splenic vasoconstrictor response to the NPY Y2 receptor agonist N-acetyl[Leu25Leu31]NPY(24-36), but did not affect the response to the NPY Y1 receptor agonist [Leu31Pro34]NPY, which in turn was abolished by the selective NPY Y1 receptor antagonist (2R)-5-([amino(imino)methyl]amino)-2-[(2,2-diphenylacetyl)amino]-N-[(IR)-1-(4-hydroxyphenyl)ethyl]-pentanamide (H 409/22). Furthermore, the PYY-evoked splenic vasoconstrictor response was partially antagonized by BIIE0246 and subsequently almost abolished by the addition of H 409/22. It is concluded that BIIE0246 exerts selective (vs the NPY Y1 receptor) NPY Y2 receptor antagonism, and thus represents an interesting tool for classification of NPY receptors, in vivo. In addition, evidence for NPY Y2 receptor mediated vasoconstriction was presented. Furthermore, both NPY Y1 and Y2 receptors are involved in the splenic vasoconstrictor response to PYY.  相似文献   

4.
We report the cloning and pharmacological characterization of two neuropeptide Y (NPY) receptor subtypes, Y2 and Y7, in rainbow trout (Oncorhynchus mykiss). These subtypes are approximately 50% identical to each other and belong to the Y2 subfamily of NPY receptors. The binding properties of the receptors were investigated after expression in human HEK-293 EBNA cells. Both receptors bound the three zebrafish peptides NPY, PYYa, and PYYb, as well as porcine NPY and PYY, with affinities in the nanomolar range that are similar to mammalian Y2. The affinity of the truncated porcine NPY fragments, NPY 13-36 and NPY 18-36 was markedly lower compared to mammalian and chicken Y2. This suggests that mammalian and chicken Y2 are unique among NPY receptors in their ability to bind truncated peptide fragments. The antagonist BIIE0246, developed for mammalian Y2, did not bind either of the two rainbow trout receptors. Our results support the proposed expansion of this gene family by duplications before the gnathostome radiation. They also reveal appreciable differences in the repertoire and characteristics of NPY receptors between fish and tetrapods stressing the importance of lineage-specific gene loss as well as sequence divergence after duplication.  相似文献   

5.
Wilson JX 《FEBS letters》2002,518(1-3):5-9
The neuropeptide Y (NPY) receptor Y2 antagonist BIIE0246 has sub-nanomolar affinity for the human Y2 (hY2) receptor but binds very poorly to chicken Y2 (chY2) with micromolar affinity. Sequence comparisons identified several amino acids for investigation by mutagenesis. Reciprocal mutagenesis between hY2 and chY2 revealed that three of these, individually and in combination, are important for BIIE0246 binding, namely positions Gln(135) in transmembrane (TM) 3, Leu(227) in TM5, and Leu(284) in TM6. Mutagenesis of hY2 to the corresponding amino in chY2 (generating hY2[Q135H,L227Q,L284F]) made the affinity of BIIE0246 as low as for chY2. Introduction into chY2 of the three human residues resulted in antagonist affinity almost as high as for hY2. To distinguish between direct and indirect effects, each of the three residues in hY2 was replaced with alanine. BIIE0246 bound with 28-fold lower affinity to hY2[L227A], suggesting the Leu(227) interacts directly with the antagonist. The other two alanine mutants bound with unaltered affinity, suggesting that the corresponding chY2 residues abolish binding through steric hindrance or charge repulsion. Thus, three amino acid residues can in an additive manner completely account for the difference in antagonist binding between the hY2 and chY2 receptors. These results will be useful for construction of three-dimensional models of the widely divergent NPY receptor subtypes.  相似文献   

6.
We report here the isolation and functional expression of a neuropeptide Y (NPY) receptor from the river lamprey, Lampetra fluviatilis. The receptor displays approximately 50% amino-acid sequence identity to all previously cloned Y1-subfamily receptors including Y1, Y4, and y6 and the teleost subtypes Ya, Yb and Yc. Phylogenetic analyses point to a closer relationship with Y4 and Ya/b/c suggesting that the lamprey receptor could possibly represent a pro-orthologue of some or all of those gnathostome receptors. Our results support the notion that the Y1 subfamily increased in number by genome or large-scale chromosome duplications, one of which may have taken place prior to the divergence of lampreys and gnathostomes whereas the second duplication probably occurred in the gnathostome lineage after this split. Functional expression of the lamprey receptor in a cell line facilitated specific binding of the three endogenous lamprey peptides NPY, peptide YY and peptide MY with picomolar affinities. Binding studies with a large panel of NPY analogues revealed indiscriminate binding properties similar to those of another nonselective Y1-subfamily receptor, zebrafish Ya. RT-PCR detected receptor mRNA in the central nervous system as well as in several peripheral organs suggesting diverse functions. This lamprey receptor is evolutionarily the most distant NPY receptor that clearly belongs to the Y1 subfamily as defined in mammals, which shows that subtypes Y2 and Y5 arose even earlier in evolution.  相似文献   

7.
Purified ligandin (Y-protein) a 46000-dalton protein, has been shown to consist of two subunit species (mol. wts. 22 000 and 24 000) on discontinuous polyacrylamide gel electrophoresis in sodium dodecyl sulphate. This technique was used to define further the nature of these subunits. The Y sulphobromophthalein-binding fraction of rat hepatic cytosol was shown to contain three major subunit bands designated subunit Ya, subunit Yb and subunit Yc in ascending order of size. Purified ligandin was found to comprise Ya and Yc subunit species, and also gave two bands on isoelectric focusing. The two subunit species in purified ligandin were partially separated by an additional purification step. Antiserum to ligandin reacted mono-specifically with the purified protein, as well as hepatic, renal and small intestinal mucosa cytosol, but gave lines of identity and partial identity with cytosol from testis, ovary and adrenal gland. The Y fraction of testis was found to contain only Yb and Yc species, while all three major bands were found in liver, kidney and small intestinal mucosa. Phenobarbital treatment increased the concentration of Ya and Yb in the liver, but had little effect on Yc. These findings suggest that the Ya and Yc ligandin subunits are the monomers of two proteins: YaYa and YcYc.  相似文献   

8.
The rat glucocorticoid-induced receptor (rGIR) is an orphan G protein-coupled receptor awaiting pharmacological characterization. Among known receptors, rGIR exhibits highest sequence similarity to the neuropeptide Y (NPY)-Y(2) receptor (38-40%). The pharmacological profile of rGIR was investigated using (125)I-PYY(3-36), a Y(2)-preferring radioligand and several NPY analogs. rGIR displayed a similar displacement profile as reported for the Y(2) receptor, in that the Y(2)-selective C terminus fragments of NPY and PYY (NPY(3-36) and PYY(3-36)) showed high affinity binding and activation of rGIR (low nanomolar range). The rank order potency for displacement was NPY(3-36)>PYY(3-36)=NPY>NPY(13-36)>Ac, Leu NPY(24-36)>[D-Trp(32)]-NPY>Leu(31), Pro(34)-NPY=hPP. NPY and Y(2)-selective agonists NPY(3-36) and PYY(3-36) led to significant activation of (35)S-GTPgammaS binding to rGIR transfected cells. BIIE0246, a specific Y(2) antagonist, displaced (125)I-PYY(3-36) binding to rGIR with high affinity (95nM). Activation of (35)S-GTPgammaS binding by Y(2)-selective agonist in rGIR transfected cells was also completely abolished by BIIE0246. Our data report, for the first time, an interaction of NPY ligands with rGIR expressed in vitro, and indicate similarities between GIR and the NPY-Y(2) receptor.  相似文献   

9.
Brill J  Kwakye G  Huguenard JR 《Peptides》2007,28(2):250-256
Neuropeptide Y is the ligand of a family of G-protein coupled receptors (Y(1) to Y(6)). In the thalamus, exogenous and endogenously released NPY can shorten the duration of thalamic oscillations in brain slices from P13 to P15 rats, an in vitro model of absence seizures. Here, we examine which Y receptors are involved in this modulation. Application of the Y(1) receptor agonist Leu(31)Pro(34)NPY caused a reversible reduction in the duration of thalamic oscillations (-26.6+/-7.8%), while the Y(2) receptor agonist peptideYY((3-36)) and the Y(5) receptor agonist BWX-46 did not exert a significant effect. No Y receptor agonist affected oscillation period. Application of antagonists of Y(1), Y(2) and Y(5) receptors (BIBP3226, BIIE0246 and L152,806, respectively) produced results consistent with those obtained from agonists. BIBP3226 caused a reversible disinhibition, an effect that increases oscillation duration (18.2+/-9.7%) while BIIE0246 and L152,806 had no significant effect. Expression of NPY is limited to neurons in the reticular thalamic nucleus (nRt), but Y(1) receptors are expressed in both nRt and adjacent thalamic relay nuclei. Thus, intra-nRt or nRt to relay nucleus NPY release could cause Y(1) receptor mediated inhibition of thalamic oscillations.  相似文献   

10.
The Y receptors comprise a family of G-protein coupled receptors with neuropeptide Y-family peptides as endogenous ligands. The Y receptor family has five members in mammals and evolutionary data suggest that it diversified in the two genome duplications proposed to have occurred early in vertebrate evolution. If this theory holds true, it allows for additional family members to be present. We describe here the cloning, pharmacological characterization, tissue distribution, and chromosomal localization of a novel subtype of the Y-receptor family, named Y7, from the zebrafish. We also present Y7 sequences from rainbow trout and two amphibians. The new receptor is most similar to Y2, with 51–54% identity. As Y2 has also been cloned from some of these species, there clearly are two separate Y2-subfamily genes. Chromosomal mapping in zebrafish supports origin of Y7 as a duplicate of Y2 by chromosome duplication in an early vertebrate. Y7 has probably been lost in the lineage leading to mammals. The pharmacological profile of the zebrafish Y7 receptor is different from mammalian Y2, as it does not bind short fragments of NPY with a high affinity. The Y7 receptor supports the theory of early vertebrate genome duplications and suggests that the Y family of receptors is a result of these early genome duplications.  相似文献   

11.
The neuropeptide Y-family peptides and receptors are involved in a broad range of functions including appetite regulation. Both the peptide genes and the receptor genes are known to have duplicated in early vertebrate evolution. The ancestral jawed vertebrate had 7 NPY receptors but the number varies between 4 and 7 in extant vertebrates. Herein we describe the identification of an additional NPY receptor in two fish species, zebrafish and medaka. They cluster together with the Y2 receptors in phylogenetic analyses and seem to be orthologous to each other that is why we have named them Y2-2. Their genes differ from Y2 in having introns in the coding region. Binding studies with zebrafish Y2-2 receptors show that the three endogenous peptides NPY, PYYa and PYYb have similar affinities, 0.15–0.66 nM. This is in contrast to the Y2 receptor where they differed considerably from one another. N-terminally truncated NPY binds poorly and the Y2 antagonist BIIE0246 binds well to Y2-2, results that are reversed in comparison to Y2. Zebrafish Y2-2 mRNA was detected by PCR in the intestine and the eye, but not in the brain. In conclusion, we have found a novel Y2-like NPY/PYY receptor that probably arose in early teleost fish evolution.  相似文献   

12.
Cox HM  Pollock EL  Tough IR  Herzog H 《Peptides》2001,22(3):445-452
A functional study has been performed to characterise the Y receptors responsible for NPY, PYY and PP-stimulated responses in mouse colonic mucosal preparations. Electrogenic ion secretion was stimulated with VIP following which NPY, PYY and PP analogues were, to varying degrees, inhibitory. PYY(3-36), hPP, Gln(23)hPP and rPP were effective but less potent than full length PYY, NPY or their Pro(34)-substituted analogues, while the Y(5) agonist Ala(31), Aib(32)hNPY was the least active peptide tested. The Y(1) antagonists, BIBP3226 and BIBO3304 virtually abolished Pro(34)PYY and PYY responses while PYY(3-36) responses were selectively inhibited by the Y(2) antagonist, BIIE0246. A combination of BIBO3304 and BIIE0246 also partially attenuated hPP responses, leaving residual effects that were most probably Y(4)-mediated. Thus we conclude that Y(1), Y(2) and Y(4) receptors attenuate ion secretion in mouse colon.  相似文献   

13.
This work describes the isolation and pharmacological characterization of a neuropeptide Y (NPY) receptor from rainbow trout (Oncorhynchus mykiss). The receptor exhibits approximately 45% amino acid sequence identity to mammalian Y1-subfamily receptors, Y1, Y4 and y6, a similar degree of identity as these subtypes display to one another. Because it displays highest sequence identity to zebrafish Yb (75%), we named it the trout Yb receptor. The receptor exhibits high binding affinity for zebrafish and human NPY and peptide YY (PYY) but not truncated forms of the peptides. Human pancreatic polypeptide (PP) also binds with high affinity. Y1 selective antagonists exhibit poor binding as is the case for Y2 and Y5 selective ligands. This binding profile supports membership in the Y1 subfamily. Sequence data also support this relationship suggesting that Yb is a fourth and separate member of the Y1 subfamily. NPY has a number of important physiological functions such as regulating food intake and reproduction. The expression of the receptor in the hypothalamus and telencephalon suggests a possible role in these processes. This and other receptors from this species have potential for improving aquaculture.  相似文献   

14.
Human neuropeptide Y Y2 receptors expressed in CHO cells are largely oligomeric, and upon solubilization are recovered by density gradient centrifugation as approximately 180 kDa complexes of receptor dimers and G-protein heterotrimers. A large fraction of the receptors is inactivated in the presence of pertussis toxin, in parallel with inactivation of Gi alpha subunits (with half-periods of about 4 h for both). This is accompanied by a very long-lasting loss of receptor dimers and of masked surface Y2 sites (an apparent receptor reserve pre-coupled mainly to Gi alpha subunit-containing G-proteins). However, surface Y2 receptors accessible to large peptide agonists are much less sensitive to the toxin. All surface Y2 receptors are rapidly blocked by Y2 antagonist BIIE0246, with a significant loss of the dimers, but with little change of basal Gi activity. However, both dimers and Y2 receptor compartmentalization are restored within 24 h after removal of the antagonist. In CHO cells, the maintenance and organization of Y2 receptors appear to critically depend on functional pertussis toxin-sensitive G-proteins.  相似文献   

15.
Thorsell A 《Peptides》2007,28(2):480-483
Neuropeptide Y has a role in alcohol intake and dependence. NPY's effect on alcohol intake appears to be in part dependent on the individual's history of alcohol dependence. In models of high intake such as alcohol-preferring, selectively bred rat lines (e.g., the P-line and the HAD line), as well as in ethanol-vapor-exposed subjects, NPY modulates alcohol intake while leaving it unaffected during baseline conditions. The primary receptor subtype mediating NPY's effect on ethanol intake remains in question. The Y2-antagonist BIIE0246 significantly suppresses ethanol intake in an operant paradigm with a sensitization to the effect of BIIE0246 in vapor-exposed subjects. We propose the NPY system to be one of the most interesting target systems for the development of treatments for alcohol abuse and dependence.  相似文献   

16.
The purpose of the present study was to determine whether the activation of NPY receptors alters catecholamines (CA) synthesis in the central nervous system and, if so, to identify the NPY receptor subtype(s) mediating this effect. Tyrosine hydroxylation, the rate-limiting step in CA synthesis, was assessed by measuring the accumulation of 3,4-dihydroxyphenyalanine (DOPA) by high pressure liquid chromatography coupled to electrochemical detection (HPLC-EC) in rat striatal dices following incubation of the tissue with the aromatic L-amino acid decarboxylase inhibitor m-hydroxybenzyl hydrazine (NSD 1015). Treatment with NSD 1015 resulted in an increase in DOPA accumulation that was increased even further following depolarization with a high potassium (KCl) buffer. PYY13-36 and NPY13-36 both produced a significant enhancement of the KCl-induced increase in DOPA accumulation. The effect of PYY13-36 was completely attenuated by the selective Y2 antagonist BIIE0246 suggesting that activation of Y2 receptors enhanced the synthesis of dopamine. In contrast to the effects of NPY13-36 and PYY13-36; NPY, PYY and PYY3-36 all produced a significant attenuation of the KCl-induced increase in DOPA accumulation. The Y1 antagonist BIBO3304 and the Y5-antagonist CGP71683A, both prevented the inhibitory effect of NPY converting it to a stimulatory effect. The enhancement of the NPY induced increase in DOPA accumulation observed by BIBO3304 was attenuated when examined in the presence of the Y2 antagonist BIIE0246. These results suggest that activation of NPY receptors can modulate the synthesis of CA in the rat striatum. The Y1 and Y5 receptor appear to be involved in attenuation, while Y2 receptors are involved in the stimulation of synthesis.  相似文献   

17.
Expression of glutathione S-transferases in rat brains   总被引:3,自引:0,他引:3  
The tissue-specific expression of glutathione S-transferases (GSTs) in rat brains has been studied by protein purification, in vitro translation of brain poly(A) RNAs, and RNA blot hybridization with cDNA clones of the Ya, Yb, and Yc subunit of rat liver GSTs. Four classes of GST subunits are expressed in rat brains at Mr 28,000 (Yc), Mr 27,000 (Yb), Mr 26,300, and Mr 25,000. The Mr 26,3000 species, or Y beta, has an electrophoretic mobility between that of Ya and Yb, similar to the liver Yn subunit(s) reported by Hayes (Hayes, J. D. (1984) Biochem. J. 224, 839-852). RNA blot hybridization of brain poly(A) RNAs with a liver Yb cDNA probe revealed two RNA species of approximately 1300 and approximately 1100 nucleotides. The band at approximately 1300 nucleotides was absent in liver poly(A) RNAs. The Mr 25,000 species, or Y delta, can be immunoprecipitated by antisera against rat heart and rat testis GSTs, but not by antiserum against rat liver GSTs. Therefore, the Y delta subunit may be related to the "Mr 22,000" subunit reported by Tu et al. (Tu, C.-P.D., Weiss, M.J., Li, N., and Reddy, C. C. (1983) J. Biol. Chem. 258, 4659-4662). The abundant liver GST subunits, Ya, are not expressed in rat brains as demonstrated by electrophoresis of purified brain GSTs and a lack of isomerase activity toward the Ya-specific substrate, delta 5-androstene-3,17-dione. This is apparently because of the absence of Ya mRNA expression prior to RNA processing. The data on the preferential expression of Yc subunits in rat brains, together with the differential phenobarbital inducibility of the Ya subunit(s) in rat liver reported by Pickett et al. (Pickett, C. B., Donohue, A. M., Lu, A. Y. H., and Hales, B. F. (1982) Arch. Biochem. Biophys. 215, 539-543), suggest that the Ya and Yc genes for rat GSTs are two functionally distinct gene families even though they share 68% DNA sequence homology. The expression of multiple GSTs in rat brains suggests that GSTs may be involved in physiological processes other than xenobiotics metabolism.  相似文献   

18.
We set out to determine the effect of peptide YY(3-36) (PYY(3-36)) on the gastric muscle tone in conscious rats by measuring intragastric pressure (IGP) during intragastric nutrient drink infusion. After an overnight fast, a chronically implanted gastric fistula was connected to a custom-made nutrient drink infusion system and a catheter to measure IGP. IGP was measured before and during the infusion of a nutrient drink (Nutridrink; 0.5 ml/min) until 10 ml was infused. Rats were treated with PYY(3-36) (0, 33, and 100 pmol·kg(-1)·min(-1)) in combination with a subcutaneous injection of the Y(2) receptor antagonists JNJ31020028 (10 mg/kg) or BIIE0246 (2 mg/kg). Experiments were also performed after subdiaphragmatic vagotomy and after pretreatment with 3 ml of nutrient drink (to mimic a fed state). IGP was compared as the average IGP during nutrient infusion, represented as means ± SE and compared using ANOVA. PYY(3-36) dose dependently increased the IGP during nutrient infusion (4.7 ± 0.3, 5.7 ± 0.5 and 7.3 ± 0.7 mmHg; P < 0.01) while JNJ31020028 and BIIE0246 could block this increase [4.4 ± 0.5 (P < 0.001) and 4.8 ± 0.4 (P < 0.05) mmHg, respectively]. Also in vagotomized rats, PYY(3-36) was able to significantly increase the IGP during, an effect attenuated by JNJ31020028. BIIE0246 and JNJ31020028 were not able to decrease the IGP when no PYY(3-36) was administered. PYY(3-36) increased gastric tone through an Y(2) receptor-mediated mechanism that does not involve the vagus nerve. Y(2) receptor antagonists were not able to decrease gastric tone without exogenous administration of PYY(3-36), indicating that Y(2) receptors do not play a crucial role in the determination of gastric tone in physiological conditions.  相似文献   

19.
We describe a Xenopus P2Y receptor that shares only weak homology with members of the mammalian P2Y family, being most similar to human P2Y(11). When activated by nucleotide analogs, it stimulates both calcium and cAMP mobilization pathways, a feature unique, among mammalian P2Y receptors, to P2Y(11). Activity can be blocked by compounds known to act as antagonists of mammalian P2Y(11). Genomic synteny between Xenopus and mammals suggests that the novel gene is a true ortholog of P2Y(11). Xenopus P2Y(11) is transcribed during embryonic development, beginning at gastrulation, and is enriched in the developing nervous system.  相似文献   

20.
A non-destructive nitrogen (N) detector [Agriexpert PPW-3000 (PPW-3000)] is a useful device for rapid and non-destructive measurement of leaf N content. However, some studies find a poor correlation between the PPW-3000 reading and the actual leaf N content; the R2 value of the approximate equation was low. To improve the accuracy of N estimation, we determined the approximate equation taking into account the leaf development stage (maturing and mature leaves) and leaf flush type (early and late leaves). For the leaf development stage, we determined approximate equations for maturing leaves (Ya), mature leaves (Yb), and "maturing+mature" leaves (Yc) in species having simultaneous leaf emergence. The resulting accuracy of Ya, Yb, and Yc was quite high. For leaf flush species, we determined approximate equations for early leaves (Y1), late leaves (Y2), and "early+late" leaves (Y3) in species having heterophyllous leaf emergence. The accuracy of Y1 and Y2 was relatively high, but that of Y3 was low. We conclude that, when using a PPW-3000, we can determine an approximate equation for maturing and mature leaves jointly, but should treat early and late leaves separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号