首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: The murine neuroblastoma N1E-115 cell line possesses a high density of angiotensin II (Angll) receptors that can be solubilized with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. These solubilized binding sites exhibited high affinity for CGP-42112A and not Losartan, indicating that they were of the AT2 subtype. However, displacement of 125I-Angll with the AT2 nonpeptide antagonist PD-123319 resulted in a biphasic curve, suggesting heterogeneity of the AT2 receptor population in N1E-115 cells. In support of this view, separation of two receptor populations was accomplished with heparin-Sepharose chromatography. More specifically, three distinct protein peaks eluted from the heparin-Sepharose column, two of which bound 125I-Angll with high affinity and saturability. One of these binding peaks (peak I) eluted rapidly and represented ~80% of the total binding activity, whereas the remaining binding activity was contained within a second peak (peak III) that required the addition of 1.5 M NaCI for its complete elution. Pharmacological analysis revealed that both peaks of binding activity were exclusively AT2 receptors insofar as they exhibited high affinity for CGP-42112A and little or no affinity for the AT1-selective antagonist Losartan. However, whereas the nonpeptidic AT2-selective antagonist PD-123319 completely displaced the binding of 126I-Angll from peak I in a monophasic fashion (IC50= 9.1 ± 4.1 nM; mean ± SEM; n = 3), PD-123319 was much less effective in displacing 125I-Angll from peak III (IC50= 196 β 27 nM; mean β SEM; n = 3). Treatment of individual peaks with the reducing agent dithiothreitol caused a large increase in 125I-Angll specific binding in peak III, whereas a decrease in binding was observed in peak I. Moreover, GTPγS significantly reduced high-affinity agonist binding in peak I but not peak III, further suggesting heterogeneity in the AT2 receptor family. Finally, immunoblotting studies with polyclonal antisera raised against peak I specifically detected two proteins of 110 and 66 kDa, as is true in crude solubilized membranes, whereas no immunospecific proteins were detected in peak III. These same antisera immunoprecipitated 125I-Angll binding activity in peak I but were ineffective in peak III. Collectively, these results suggest that heparin-Sepharose chromatography can efficiently separate two pharmacologically, biochemically and immunologically distinct populations of AT2 receptors.  相似文献   

2.
Abstract: The regulation of 5-HT2A receptor expression by an antisense oligodeoxynucleotide, complementary to the coding region of rat 5-HT2A receptor mRNA, was examined in a cortically derived cell line and in rat brain. Treatment of A1A1 variant cells, which express the 5-HT2A receptor coupled to the stimulation of phosphatidylinositol (PI) hydrolysis, with antisense oligodeoxynucleotide decreased the maximal stimulation of PI hydrolysis by the partial agonist quipazine and the number of 5-HT2A receptor sites as measured by the binding of 2-[125I]-iodolysergic acid diethylamide. Treatment of cells with random, sense, or mismatch oligodeoxynucleotide did not alter the stimulation of PI hydrolysis by quipazine or 5-HT2A receptor number. Intracerebroventricular infusion of antisense, but not mismatch, oligodeoxynucleotide for 8 days resulted in a significant increase in cortical 5-HT2A receptor density and an increase in headshake behavior induced by the 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane. The density of cortical 5-HT2A receptors was not altered by administration of antisense oligodeoxynucleotide for 1, 2, or 4 days. We hypothesize that in brain this antisense oligodeoxynucleotide relieved some form of translational suppression, resulting in an increase in 5-HT2A receptor expression.  相似文献   

3.
The AT4 receptor was characterized initially as a specific binding site for angiotensin IV, a C-terminal fragment of the vasoactive peptide angiotensin II. Recently, we found that LVV-hemorphin-7, a fragment of beta globin, is an abundant peptide in the brain and binds to the AT4 receptor with high affinity and specificity. In the neuroblastoma/glioma hybrid cell line, NG108-15, LVV-hemorphin-7 and angiotensin IV competed for 125I-angiotensin IV binding in a biphasic fashion with IC50 values of 1.2 x 10(-10) and 1.1 x 10(-9) M for the high-affinity site, respectively, and 6.7 x 10(-8) and 1.5 x 10(-8) M for the low-affinity site, respectively. Both peptides were internalized rapidly by the cells. However, LVV-hemorphin-7, but not angiotensin IV, elicited a 1.8-fold increase in DNA synthesis in a dose-dependent manner. Furthermore, co-incubation of the cells with an excess of angiotensin IV (10(-6) M) inhibited LVV-hemorphin-7-stimulated DNA synthesis. Therefore, whereas LVV-hemorphin-7 and angiotensin IV were capable of binding to the AT4 receptor, only LVV-hemorphin-7 elicited [3H]thymidine incorporation in NG108-15 cells. In contrast, angiotensin IV behaved as an antagonist. The current finding suggests that LVV-hemorphin-7 is a functional peptide in the central nervous system and in view of its abundance in neural tissue, compared with angiotensin IV, may be of significant physiological importance.  相似文献   

4.
Previous evidence has suggested that brain catecholamine levels are important in the regulation of central angiotensin II receptors. In the present study, the effects of norepinephrine and 3,4-dihydroxyphenylethylamine (dopamine) on angiotensin II receptor regulation in neuronal cultures from rat hypothalamus and brainstem have been examined. Both catecholamines elicit significant decreases in [125I]angiotensin II-specific binding to neuronal cultures prepared from normotensive rats, effects that are dose dependent and that are maximal within 4-8 h of preincubation. Saturation and Scatchard analyses revealed that the norepinephrine-induced decrease in the binding is due to a decrease in the number of angiotensin II receptors in neuronal cultures, with little effect on the receptor affinity. Norepinephrine has no significant actions on [125I]angiotensin II binding in cultures prepared from spontaneously hypertensive rats. The downregulation of angiotensin II receptors by norepinephrine or dopamine is blocked by alpha 1-adrenergic and not by other adrenergic antagonists, a result suggesting that this effect is initiated at the cell surface involving alpha 1-adrenergic receptors. This is further supported by our data indicating a parallel downregulation of specific alpha 1-adrenergic receptors elicited by norepinephrine. In summary, these results show that norepinephrine and dopamine are able to alter the regulation of neuronal angiotensin II receptors by acting at alpha 1-adrenergic receptors, which is a novel finding.  相似文献   

5.
Abstract: Bradykinin receptors have been subdivided into at least two major pharmacological subtypes, B1 and B2. The cDNAs encoding functional B2 receptors have recently been cloned, but no molecular information exists at present on the B1 receptor. In this article, we describe experiments examining the possible relationship between the mRNAs encoding the B1 and B2 types of receptor. We showed previously that the Human fibroblast cell line W138 expresses both B1 and B2 receptors. In this report, we describe oocyte expression experiments showing that the B1 receptor in W138 human fibroblast cells is encoded by a distinct mRNA ∼2 kb shorter than that encoding the B2 receptor. We have used an antisense approach in conjunction with the oocyte expression system to demonstrate that the two messages differ in sequence at several locations throughout the length of the B2 sequence. Taken together with the mixed pharmacology exhibited in some expression systems by the cloned mouse receptor, the data indicate that B1-type pharmacology may arise from two independent molecular mechanisms.  相似文献   

6.
7.
The present investigation determined that native angiotensins II and III (ANG II and III) were equipotent as pressor agents when ICV infused in alert rats, whereas native angiotensin IV (ANG IV) was less potent. An analogue of each of these angiotensins was prepared with a hydroxyethylamine (HEA) amide bond replacement at the N-terminus, yielding additional resistance to degradation. These three angiotensin analogues, HEA-ANG II, HEA-ANG III, and HEA-ANG IV, were equivalent with respect to maximum elevation in pressor responses when ICV infused; and each evidenced significantly extended durations of effect compared with their respective native angiotensin. Comparing analogues, HEA-ANG II had a significantly longer effect compared with HEA-ANG III, and HEA-ANG IV, whereas the latter were equivalent. Pretreatment with the AT1 receptor subtype antagonist, Losartan (DuP753), blocked subsequent pressor responses to each of these analogues, suggesting that these responses were mediated by the AT1 receptor subtype. Pretreatment with the specific AT4 receptor subtype antagonist, Divalinal (HED 1291), failed to influence pressor responses induced by the subsequent infusion of these analogues. These results suggest an important role for Ang III, and perhaps ANG IV, in brain angiotensin pressor responses mediated by the AT1 receptor subtype.  相似文献   

8.
Abstract: Angiotensin IV (Val-Tyr-Ile-His-Pro-Phe) has been reported to interact with specific high-affinity receptors to increase memory retrieval, enhance dopamine-induced stereotypy behavior, and induce c- fos expression in several brain nuclei. We have isolated a decapeptide (Leu-Val-Val-Tyr-Pro-Trp-Thr-Gln-Arg-Phe) from sheep brain that binds with high affinity to the angiotensin IV receptor. The peptide was isolated using 125I-angiotensin IV binding to bovine adrenal membranes to assay receptor binding activity. This peptide is identical to the amino acid sequence 30–39 of sheep βA- and βB-globins and has previously been named LVV-hemorphin-7. Pharmacological studies demonstrated that LVV-hemorphin-7 and angiotensin IV were equipotent in competing for 125I-angiotensin IV binding to sheep cerebellar membranes and displayed full cross-displacement. Using in vitro receptor autoradiography, 125I-LVV-hemorphin-7 binding to sheep brain sections was identical to 125I-angiotensin IV binding in its pattern of distribution and binding specificity. This study reveals the presence of a globin fragment in the sheep brain that exhibits a high affinity for, and displays an identical receptor distribution with, the angiotensin IV receptor. This globin fragment, LVV-hemorphin-7, may therefore represent an endogenous ligand for the angiotensin IV receptor in the CNS.  相似文献   

9.
The effects of angiotensin II (AII) and related peptides on the mobilization of internal Ca2+ were studied in a subclone of NG 108-15 cells. The subclone, C1, was prepared by fluorescence-activated cell cloning using a rapid response kinetics and a large response magnitude following stimulation by AII as the selection criteria. Angiotensin I, AII, and angiotensin III (AIII) stimulated Ca2+ mobilization in the C1 cells in a concentration-dependent manner (1 nM-100 microM), yielding EC50 values of 437 +/- 80 nM (n = 4; slope = 1.6 +/- 0.3), 57 +/- 8 nM (n = 12; slope = 1.5 +/- 0.3), and 36 +/- 5 nM (n = 7; slope = 1.4 +/- 0.3), respectively. AIII was significantly more potent than AII (p less than 0.05). In contrast, Des-Phe8-AII, AII-hexapeptide (AII 3-8), and p-NH2-Phe6-AII (1-10 microM) were inactive as agonists. Although the effects of AII and AIII in C1 and parent NG108-15 cells were totally inhibited by the AT1 receptor-selective nonpeptide antagonist, DUP-753 (0.3-1 microM), the AT2-selective antagonists, EXP-655 and CGP42112A (1-10 microM), failed to block the effects of AII. DUP-753 (0.3-100 nM) produced dextral shifts of the AII-induced concentration-response curves and yielded an estimated affinity constant (pA2) of 8.5 +/- 0.2 (n = 16) using single-point analysis involving different concentrations of DUP-753. These data compared well with those obtained for the inhibition of AII-induced aortic contractions by DUP-753 (pA2 = 8.5) reported previously by others.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Abstract: GABAB and dopamine D2 receptors, both of which acutely inhibit adenylyl cyclase and high voltage-activated Ca2+ channels (HVA-CCs), are found in high levels in the melanotrope cells of the pituitary intermediate lobe. Chronic D2 receptor agonist application in vitro has been reported to result in inhibition of HVA-CC activity by down-regulation. Here we report that chronic GABAB, but not GABAA, agonist treatment also resulted in HVA-CC inhibition. Two GABAB receptor variants have been cloned and shown to inhibit adenylyl cyclase in HEK-293 cells. We have constructed an antisense deoxynucleotide knockdown-type probe that is complementary to 18 bp from the point at which the two sequences first become homologous. Chronic coincubation with baclofen and GABAB antisense nucleotide completely eliminated the inhibition of the channels by baclofen alone but had no reversing effect on HVA-CC inhibition by the D2 agonist quinpirole. A scrambled, missense nucleotide also had no reversing effect. Incubation with a D2 antisense knockdown probe eliminated the ability of a D2 agonist to inhibit the channels but had no effect on baclofen blockade. These results show the existence an R1a/R1b type of GABAB receptor, which, like the D2 receptor, is coupled to chronic HVA-CC inhibition in melanotropes.  相似文献   

11.
Abstract: To define the effects of antisense oligonucleotides on spinal neurokinin 1 (NK1) receptor function in nociceptive processing, several antisense oligonucleotides directed against the NK1 receptor mRNA were intrathecally injected into rats via an implanted catheter, and their effect on the behavioural response to formalin injected into the paw was assessed. We observed that there was no significant reduction of pain behaviour or immunostaining of spinal NK1 receptors after repeated daily intrathecal treatment with an antisense oligonucleotide. However, spinal application of substance P (SP) in the antisense oligonucleotide-treated animals resulted in a profound and long-lasting reduction in the behavioural response to formalin injection, and a parallel reduction in the NK1 receptor immunoreactivity normally observed in spinal dorsal horn. Intrathecal SP in the control groups, i.e., rats treated with an oligonucleotide containing four mismatched bases, the corresponding sense oligonucleotide, a mixture of the sense and the antisense oligonucleotides, in each case had no effect. The effects of SP were blocked by NK1 receptor antagonists and were not mimicked by NMDA. The mechanism underlying these effects is not clear. It may be due to partial degradation of the internalised receptors, which cannot be replaced by newly synthesised receptors because of the action of the NK1 antisense oligonucleotide.  相似文献   

12.
Cloning and Characterization of a Mouse σ1 Receptor   总被引:1,自引:1,他引:0  
Abstract: A cDNA clone (S2-1a) isolated from a mouse brain cDNA library, using a guinea pig σ1 cDNA as probe, has high homology to the predicted protein sequence of the guinea pig (88%) and human (90%) σ1 receptors. Northern analysis revealed a major mRNA of ∼1.8 kb in a wide range of mouse tissues, with highest levels in brain, liver, kidney, and thymus. Southern analysis and chromosomal mapping in the mouse suggested a single-copy gene in region A5-B2 of chromosome 4. Expression of the clone in MCF-7 and CHO cells led to a pronounced increase in (+)-[3H]pentazocine binding with a selectivity profile consistent with σ1 receptors. In vitro translation yielded a protein of ∼28 kDa, as did transfection of a probe containing the hemagglutinin (HA) epitope (S2-1a.HA) into CHO cells, as determined by western analysis using an antibody directed against HA. (+)-[3H]-Pentazocine binding to immunopurified HA-tagged receptor demonstrated conclusively that S2-1a.HA encodes a high-affinity (+)-[3H]pentazocine binding site with characteristics of a murine σ1 receptor. An antisense oligodeoxynucleotide designed from S2-1a potentiated opioid analgesia in vivo.  相似文献   

13.
A1 adenosine receptors from rat brain membranes were solubilized with the zwitterionic detergent 3-[3-(cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized receptors retained all the characteristics of membrane-bound A1 adenosine receptors. A high and a low agonist affinity state for the radiolabelled agonist (R)-N6-[3H]phenylisopropyladenosine([3H]PIA) with KD values of 0.3 and 12 nM, respectively, were detected. High-affinity agonist binding was regulated by guanine nucleotides. In addition agonist binding was still modulated by divalent cations. The solubilized A1 adenosine receptors could be labelled not only with the agonist [3H]PIA but also with the antagonist 1,3-diethyl-8-[3H]phenylxanthine. Guanine nucleotides did not affect antagonist binding as reported for membrane-bound receptors. These results suggest that the solubilized receptors are still coupled to the guanine nucleotide binding protein Ni and that all regulatory functions are retained on solubilization.  相似文献   

14.
The murine neuroblastoma N1E-115 cell line contains binding sites for the angiotensin II (Ang II) receptor antagonist 125I-[Sarc1,Ile8]-Ang II (125I-SARILE). Binding of 125I-SARILE to N1E-115 membranes was rapid, reversible, and specific for Ang II-related peptides. The rank order potency of 125I-SARILE binding was the following: [Sarc1]-Ang II = [Sarc1,Ile8]-Ang II greater than Ang II greater than Ang III = [Sarc1,Thr8]-Ang II much greater than Ang I. Scatchard analysis of membranes prepared from confluent monolayers revealed a homogenous population of high affinity (KD = 383 +/- 60 pM) binding sites with a Bmax of 25.4 +/- 1.6 fmol/mg of protein. Moreover, the density, but not the affinity, of the binding sites increased as the cells progressed from logarithmic to stationary growth in culture. Finally, agonist, but not antagonist, binding to N1E-115 cells was regulated by guanine nucleotides. Collectively, these results suggest that the murine neuroblastoma N1E-115 cell line may provide a useful model in which to investigate the signal transduction mechanisms utilized by neuronal Ang II receptors.  相似文献   

15.
SUMMARY 1. Circulating and locally formed Angiotensin II regulates the cerebral circulation through stimulation of AT1 receptors located in cerebrovascular endothelial cells and in brain centers controlling cerebrovascular flow.2. The cerebrovascular autoregulation is designed to maintain a constant blood flow to the brain, by vasodilatation when blood pressure decreases and vasoconstriction when blood pressure increases.3. During hypertension, there is a shift in the cerebrovascular autoregulation to the right, in the direction of higher blood pressures, as a consequence of decreased cerebrovascular compliance resulting from vasoconstriction and pathological growth. In hypertension, when perfusion pressure decreases as a consequence of blockade of a cerebral artery, reduced cerebrovascular compliance results in more frequent and more severe strokes with a larger area of injured tissue.4. There is a cerebrovascular angiotensinergic overdrive in genetically hypertensive rats, manifested as an increased expression of cerebrovascular AT1 receptors and increased activity of the brain Angiotensin II system. Excess AT1 receptor stimulation is a main factor in the cerebrovascular pathological growth and decreased compliance, the alteration of the cerebrovascular eNOS/iNOS ratio, and in the inflammatory reaction characteristic of cerebral blood vessels in genetic hypertension. All these factors increase vulnerability to brain ischemia and stroke.5. Sustained blockade of AT1 receptors with peripheral and centrally active AT1 receptor antagonists (ARBs) reverses the cerebrovascular pathological growth and inflammation, increases cerebrovascular compliance, restores the eNOS/iNOS ratio and decreases cerebrovascular inflammation. These effects result in a reduction of the vulnerability to brain ischemia, revealed, when an experimental stroke is produced, in protection of the blood flow in the zone of penumbra and substantial reduction in neuronal injury.6. The protection against ischemia resulting is related to inhibition of the Renin–Angiotensin System and not directly related to the decrease in blood pressure produced by these compounds. A similar decrease in blood pressure as a result of the administration of β-adrenergic receptor and calcium channel blockers does not protect from brain ischemia.7. In addition, sustained AT1 receptor inhibition enhances AT2 receptor expression, associated with increased eNOS activity and NO formation followed by enhanced vasodilatation. Direct AT1 inhibition and indirect AT2 receptor stimulation are associated factors normalizing cerebrovascular compliance, reducing cerebrovascular inflammation and decreasing the vulnerability to brain ischemia.8. These results strongly suggest that inhibition of AT1 receptors should be considered as a preventive therapeutic measure to protect the brain from ischemia, and as a possible novel therapy of inflammatory conditions of the brain.  相似文献   

16.
Abstract: To expand on the nature of regional cerebral vulnerability to ischemia, the release of dopamine (DA) and dopaminergic (D1 and D2) receptors were investigated in Mongolian gerbils subjected to bilateral carotid artery occlusion (15 min) alone or with reflow (1–2 h). Extracellular cortical and striatal content of DA and its metabolites was measured by microdialysis using HPLC with electrochemical detection. The kinetic properties of D1 and/or D2 receptor binding sites were determined in cortical and striatal membranes with the use of radiolabeled ligands (125I-SCH23982 and [3H]YM-09151-2, respectively). The ischemic release of DA from the striatum was greater (400-fold over preischemic level) than that from the cortex (12-fold over preischemic content). The affinity for the D1-receptor ligand was lower ( K D= 1.248 ± 0.047 n M ) after ischemia than that for sham controls ( K D= 0.928 ± 0.032 n M, p < 0.001). The number of binding sites for D2 receptors decreased in striatum ( B max= 428 ± 18.4 fmol/mg of protein) after ischemia compared with sham controls ( B max= 510 ± 25.2 fmol/mg of protein, p < 0.05). D1 or D2 binding sites were not changed either in the ischemic cortex or postischemic striatum and cortex. The findings strongly suggest that the ischemic release of DA from striatum is associated with early transient changes in D1- and D2-mediated DA neurotransmission.  相似文献   

17.
18.
Neuropeptide Y (NPY) and NPY receptors are widely distributed in the CNS, including the retina, but the role of NPY in the retina is largely unknown. The aim of this study was to investigate whether NPY modulates intracellular calcium concentration ([Ca2+]i) changes in retinal neurons and identify the NPY receptors involved. As NPY decreased the [Ca2+]i amplitudes evoked by 30 mM KCl in only 50% of neurons analyzed, we divided them in two populations: NPY-non-responsive neurons (Δ2/Δ1 ≥ 0.80) and NPY-responsive neurons (Δ2/Δ1 < 0.80), being the Δ2/Δ1 the ratio between the amplitude of [Ca2+]i increase evoked by the second (Δ2) and the first (Δ1) stimuli of KCl. The NPY Y1/Y5, Y4, and Y5 receptor agonists (100 nM), but not the Y2 receptor agonist (300 nM), inhibited the [Ca2+]i increase induced by KCl. In addition, the inhibitory effect of NPY on evoked-[Ca2+]i changes was reduced in the presence of the Y1 or the Y5 receptor antagonists. In conclusion, NPY inhibits KCl-evoked [Ca2+]i increase in retinal neurons through the activation of NPY Y1, Y4, and Y5 receptors. This effect may be viewed as a potential neuroprotective mechanism of NPY against retinal neurodegeneration.  相似文献   

19.
Preincubation of D384 cells, derived from the human astrocytoma cell line G-CCM, with dopamine resulted in a time-dependent attenuation of cyclic AMP responsiveness to subsequent dopamine stimulation. This effect was agonist specific because the prostaglandin E1 (PGE1) stimulation of cyclic AMP of similarly treated cells remained unchanged. The attenuation by dopamine was concentration dependent with a maximum observed at 100 microM. A comparison of dopamine concentration-response curves of control and dopamine-preincubated cells revealed no change in the Ka apparent value, but a marked attenuation of the maximal response. Preincubation of cells with dopamine in the presence of D1 but not D2 selective antagonists partially prevented the observed attenuation. Attenuations in dopamine responsiveness were also obtained when D384 cells were preincubated with D1 but not D2 receptor agonists. The level of attenuation attained related to agonist efficiency in stimulating cyclic AMP: SKF38393 less than 3,4-dihydroxynomifensine less than fenoldopam less than 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene = dopamine. However, increasing the efficiency of 3,4-dihydroxynomifensine stimulation of cyclic AMP, using the synergistic effect of adding a low concentration of forskolin, produced no further change in the attenuation of the subsequent response to dopamine. Thus, the D1 dopamine receptors expressed by D384 cells undergo homologous desensitization. Uncoupling of the D1 dopamine receptor appears to be independent of cyclic AMP formation, analogous to a mechanism proposed for the beta-adrenergic receptor.  相似文献   

20.
Bicuculline Up-Regulation of GABAA Receptors in Rat Brain   总被引:2,自引:2,他引:0  
Effects of acute and subacute administration of bicuculline on [3H]muscimol, [3H]flunitrazepam, and t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to various brain regions were studied in Sprague-Dawley rats. Acute administration of bicuculline affected neither the KD nor the Bmax of the three receptor sites. In rats treated subacutely with bicuculline (2 mg/kg, i.p., daily for 10 days), [3H]muscimol binding was increased in the frontal cortex, cerebellum, striatum, and substantia nigra. Scatchard analysis revealed that subacute treatment of rats with bicuculline resulted in a significantly lower KD of high-affinity sites in the striatum and in a significantly lower KD of high- and low-affinity sites in the frontal cortex. In the cerebellum, two binding sites were apparent in controls and acutely treated animals; however, only the high-affinity site was defined in subacutely treated animals, with an increase in the Bmax value. Triton X-100 treatment of frontal cortical membranes eliminated the difference in [3H]muscimol binding between control and subacute bicuculline treatments. On the other hand, [3H]muscimol binding was significantly increased in the cerebellum from bicuculline-treated animals even after Triton X-100 treatment. The apparent Ki of bicuculline for the GABAA receptor was also decreased in the frontal cortex and the striatum following the treatment. However, subacute administration of bicuculline affected neither the KD nor the Bmax of [3H]flunitrazepam and [35S]TBPS binding in the frontal cortex and the cerebellum. These results suggest that GABAA receptors are up-regulated after subacute administration of bicuculline, with no change in benzodiazepine and picrotoxin binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号