首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of plants to clean-up soils contaminated with trace elements could provide a cheap and sustainable technology for bioremediation. Field trials suggested that the rate of contaminant removal using conventional plants and growth conditions is insufficient. The introduction of novel traits into high biomass plants in a transgenic approach is a promising strategy for the development of effective phytoremediation technologies. This has been exemplified by generating plants able to convert organic and ionic forms of mercury into the less toxic, volatile, elemental mercury, a trait that occurs naturally only in some bacteria and not at all in plants. The engineering of a phytoremediator plant requires the optimization of a number of processes, including trace element mobilization in the soil, uptake into the root, detoxification and allocation within the plant. A number of transgenic plants have been generated in an attempt to modify the tolerance, uptake or homeostasis of trace elements. The phenotypes of these plants provide important insights for the improvement of engineering strategies. A better understanding, both of micronutrient acquisition and homeostasis, and of the genetic, biochemical and physiological basis of metal hyperaccumulation in plants, will be of key importance for the success of phytoremediation.  相似文献   

2.
This review paper is focused predominantly on the role of the cell wall in the defense response of plants to trace metals. It is generally known that this compartment accumulates toxic divalent and trivalent metal cations both during their uptake by the cell from the environment and at the final stage of their sequestration from the protoplast. However, from results obtained in recent years, our understanding of the role played by the cell wall in plant defense response to toxic metals has markedly altered. It has been shown that this compartment may function not only as a sink for toxic trace metal accumulation, but that it is also actively modified under trace metal stress. These modifications lead to an increase in the capacity of the cell wall to accumulate trace metals and a decrease of its permeability for trace metal migration into the protoplast. One of the most striking alterations is the enhancement of the level of low-methylesterified pectins: the polysaccharides able to bind divalent and trivalent metal ions. This review paper will present the most recent results, especially those that are concerned with polysaccharide level, composition and distribution under trace metal stress, and describe in detail the polysaccharides responsible for metal binding and immobilization in different groups of plants (algae and higher plants). The review also contains information related to the entry pathways of trace metals into the cell wall and their detection methods.  相似文献   

3.
Changes in the properties of soil solution in the rhizosphere of developing radish plants were investigated. Variations in these properties were expected to affect the distribution and speciation of metals in the soil and soil solution. Applications of essential nutrients were linked to plant transpiration rates and prevented excess addition of nutrient ions, so that subtle changes in soil solution composition would not be obscured. Soil solution pH, the concentration of dissolved organic carbon (DOC) and the concentrations of major and trace elements in solution were found to vary over time. Strict control of fertilizer additions led to the maintenance of a relatively low ionic strength in the soil solution, and under such conditions trace metal solubility appeared to be highy influenced by the concentration of DOC. A chemical speciation analysis was performed which showed that, while dissolved Cd and Zn were largely uncomplexed in unplanted soil, Cd and Zn in the rhizosphere existed mainly as complexed forms. It is hypothesized that this is partly a result of Ca-metal-ligand equilibrium in solution, with higher Ca concentrations in unplanted soil leading to more of the Cd and Zn in solution existing in the uncomplexed state. Changes in the concentrations of uncomplexed Cd and Zn with time gave the best correlations with changes in plant uptake of these metals over time, supporting the hypothesis that plants mainly absorb the free metal ion from soil solution.  相似文献   

4.
The uptake by plants of trace elements from the soil depends to a large extent on root characteristics and activities. Differences between plant species and varieties in the uptake of trace elements are well known. Less understood, however, are the mechanisms governing these differences and the relative significance of various root parameters.Spinach and bean varieties were, therefore, compared with respect to their root lengths and number of root apices, and to the uptake of Mn, Fe and Zn from soil-sand mixtures. The results showed significant differences among the varieties tested, both in root characteristics and in the uptake of trace elements. However, no relationships were evident between the trace element uptake by spinach varieties and their root characteristics. Contrary to this the Fe-uptake by bean varieies exhibited a clear dependence on the total number of root apices. The uptake of Mn and Zn showed a similar relationship with some exceptions. Whether the apical regions of individual roots are the most active sites of uptake or rather affect the solubility of trace elements will be the subject of further investigations.  相似文献   

5.
It has been frequently suggested that root exudates play a role in trace metal mobilization and uptake by plants, but there is little in vivo evidence. We studied root exudation of dicotyledonous plants in relation to mobilization and uptake of Cu and Zn in nutrient solutions and in a calcareous soil at varying Cu and Zn supply. Spinach (Spinacia oleracea L.) and tomato (Lycopersicon esculentum L.) were grown on resin-buffered nutrient solutions at varying free ion activities of Cu (pCu 13.0–10.4) and Zn (pZn 10.1–6.6). The Cu and Zn concentrations in the nutrient solution increased with time, except in plant-free controls, indicating that the plant roots released organic ligands that mobilized Cu and Zn from the resin. At same pCu, soluble Cu increased more at low Zn supply, as long as Zn deficiency effects on growth were small. Zinc deficiency was observed in most treatment solutions with pZn ≥ 9.3, but not in nutrient solutions of a smaller volume/plant ratio in which higher Zn concentrations were observed at same pZn. Root exudates of Zn-deficient plants showed higher specific UV absorbance (SUVA, an indicator of aromaticity and metal affinity) than those of non-deficient plants. Measurement of the metal diffusion flux with the DGT technique showed that the Cu and Zn complexes in the nutrient solutions were highly labile. Diffusive transport (through the unstirred layer surrounding the roots) of the free ion only could not explain the observed plant uptake of Cu and of Zn at low Zn2+ activity. The Cu and Zn uptake by the plants was well explained if it was assumed that the complexes with root exudates contributed 0.4% (Cu) or 20% (Zn) relative to the free ion. In the soil experiment, metal concentrations and organic C concentrations were larger in the solution of planted soils than in unplanted controls. The SUVA of the soil solution after plant growth was higher for unamended soils, on which the plants were Zn-deficient, than for Zn-amended soils. In conclusion, root exudates of dicotyledonous plants are able to mobilize Cu and Zn, and plants appear to respond to Zn deficiency by exuding root exudates with higher metal affinity.  相似文献   

6.
Phytoremediation: an overview of metallic ion decontamination from soil   总被引:23,自引:0,他引:23  
In recent years, phytoremediation has emerged as a promising ecoremediation technology, particularly for soil and water cleanup of large volumes of contaminated sites. The exploitation of plants to remediate soils contaminated with trace elements could provide a cheap and sustainable technology for bioremediation. Many modern tools and analytical devices have provided insight into the selection and optimization of the remediation process by plant species. This review describes certain factors for the phytoremediation of metal ion decontamination and various aspects of plant metabolism during metallic decontamination. Metal-hyperaccumulating plants, desirable for heavily polluted environments, can be developed by the introduction of novel traits into high biomass plants in a transgenic approach, which is a promising strategy for the development of effective phytoremediation technology. The genetic manipulation of a phytoremediator plant needs a number of optimization processes, including mobilization of trace elements/metal ions, their uptake into the root, stem and other viable parts of the plant and their detoxification and allocation within the plant. This upcoming science is expanding as technology continues to offer new, low-cost remediation options.  相似文献   

7.
Trace elements in agroecosystems and impacts on the environment.   总被引:21,自引:0,他引:21  
Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.  相似文献   

8.
The chemical, mineralogical, and microbial properties of the rhizosphere of a range of forested ecosystems were studied to identify the key processes controlling the distribution and fate of trace metals at the soil–root interface. The results of our research indicate that: (1) the rhizosphere is a soil microenvironment where properties (e.g., pH, organic matter, microbes) and processes (nutrient and water absorption, exudation) differ markedly from those of the adjacent bulk soil; (2) the rhizosphere is a corrosive medium where the weathering and neoformation of soil solid phases are enhanced; (3) the concentrations of solid-phase and water-soluble trace metals like Cd, Cu, Ni, Pb, and Zn are generally higher in the rhizosphere as shown by both macroscopic and microscopic approaches; (4) a larger fraction of water-soluble metals is complexed by dissolved organic substances in the rhizosphere; and (5) soil microorganisms play, either directly or indirectly, a distinct role on metal speciation, in particular Cu and Zn, in the rhizosphere. These results improve our capacity to estimate metal speciation and bioavailability at the soil–root interface. Furthermore, the research emphasizes the crucial physical position occupied by the rhizosphere with respect to the process of elemental uptake by plants and its key functional role in the transfer of trace metals along the food chain. We conclude that the properties and processes of the rhizosphere should be viewed as key components of assessments of the ecological risks associated with the presence of trace metals in soils.  相似文献   

9.
含锰矿渣的排放造成了严重的土壤锰污染。揭示锰毒害和植物的耐锰机制对于污染土壤治理具有重要意义。研究表明,高浓度的Mn2+能够抑制根系Ca2+、Fe2+和Mg2+等元素的吸收及活性,引起氧化性胁迫导致氧化损伤,使叶绿素和Rubisco含量下降、叶绿体超微结构破坏和光合速率降低。而锰超累积植物则具有多种解毒或耐性机制,如区域化、有机酸螯合、外排作用、抗氧化作用和离子交互作用等。根系主要通过有机酸的螯合作用促进植物对Mn^2+的转运解毒,同时能够将过量的Mn^2+区域化在根细胞壁中;叶片可通过酚类物质或有机酸螯合Mn^2+,并将其区域化在叶片表皮细胞和叶肉细胞的液泡中(或通过表皮毛将Mn^2+排出体外)。其中,金属转运蛋白在植物对Mn^2+的吸收、转运、累积和解毒过程中发挥着重要作用。  相似文献   

10.
植物对重金属的吸收和分布   总被引:68,自引:2,他引:68  
植物修复是利用植物来清除污染土壤中重金属的一项技术。该技术成功与否取决于植物从土壤中吸取金属以及向地上部运输金属的能力。植物对金属的吸收主要取决于自由态离子活度。许多螯合剂能诱导植物对重金属的吸收。金属离子在液泡中的区域化分布是植物耐重金属的主要原因。同时,细胞内的金属硫蛋白、植物螯合脓等蛋白质以及有机酸、氨基酸等在金属贮存和解毒方面也起重要作用。本文还论述了重金属在植物体内运输的生理及分子方面的研究进展。  相似文献   

11.
植物对重金属的吸收和分布   总被引:3,自引:0,他引:3  
植物修复是利用植物来清除污染土壤中重金属的一项技术。该技术成功与否取决于植 物从土壤中吸取金属以及向地上部运输金属的能力。植物对金属的吸收主要取决于自由态离子活度。许多螯合剂能诱导植物对重金属的吸收。金属离子在液泡中的区域化分布是植物耐 重金属的主要原因。同时,细胞内的金属硫蛋白、植物螯合肽等蛋白质以及有机酸、氨基酸等在金属贮存和解毒方面也起重要作用。本文还论述了重金属在植物体内运输的生理及分子 方面的研究进展。  相似文献   

12.
Mineral sands mining involves stripping topsoil to access heavy-mineral bearing deposits, which are then rehabilitated to their original state, commonly pasture in south-west Western Australia. Organic amendments such as biosolids (digested sewage sludge) can contribute organic carbon to the rehabilitating system and improve soil chemical fertility and physical conditions. Use of biosolids also introduces the risk of contamination of the soil-plant system with heavy metals, but may be a useful source of trace elements to plants if the concentrations of these elements are low in unamended soil. We expected that biosolids amendment of areas mined for mineral sands would result in increased concentrations of metals in soils and plants, and that metal uptake would be decreased by adding stockpiled topsoil or by liming. A glasshouse experiment growing a mixed annual ryegrass (Lolium rigidum)-subterranean clover (Trifolium subterraneum) sward was conducted using two soil materials (residue sand/clay and conserved topsoil) from a mineral sands mine amended with different rates of biosolids (0, 10, 20, 50 dry t/ha), and including a liming treatment (2 t/ha). Total concentrations of metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil increased with increasing rate of biosolids application. Metal uptake was generally lower where topsoil was present and was decreased by liming. With increasing biosolids application, plant metal concentrations increased for Cd, Ni and Zn but decreased or were erratic for other elements. In clover, biosolids application removed the Zn deficiency observed where biosolids were not applied. Plant uptake of all elements increased with increasing biosolids application, suggesting dilution by increased plant biomass was responsible for erratic metal concentration results. Despite the observed increases in uptake of metals by plants, metal concentrations in both species were low and below food standard thresholds. It is unlikely that a single application of biosolids in this system posed a threat from heavy metal contamination of soils or plants, and was beneficial in terms of Zn nutrition of T. subterraneum.  相似文献   

13.
Ectomycorrhizal fungi (ECM) isolates of Pisolithus albus (Cooke and Massee) from nickel-rich ultramafic topsoils in New Caledonia were inoculated onto Acacia spirorbis Labill. (an endemic Fabaceae) and Eucalyptus globulus Labill. (used as a Myrtaceae plant host model). The aim of the study was to analyze the growth of symbiotic ECM plants growing on the ultramafic substrate that is characterized by high and toxic metal concentrations i.e. Co, Cr, Fe, Mn and Ni, deficient concentrations of plant essential nutrients such as N, P, K, and that presents an unbalanced Ca/Mg ratio (1/19). ECM inoculation was successful with a plant level of root mycorrhization up to 6.7%. ECM symbiosis enhanced plant growth as indicated by significant increases in shoot and root biomass. Presence of ECM enhanced uptake of major elements that are deficient in ultramafic substrates; in particular P, K and Ca. On the contrary, the ECM symbioses strongly reduced transfer to plants of element in excess in soils; in particular all metals. ECM-inoculated plants released metal complexing molecules as free thiols and oxalic acid mostly at lower concentrations than in controls. Data showed that ECM symbiosis helped plant growth by supplying uptake of deficient elements while acting as a protective barrier to toxic metals, in particular for plants growing on ultramafic substrate with extreme soil conditions. Isolation of indigenous and stress-adapted beneficial ECM fungi could serve as a potential tool for inoculation of ECM endemic plants for the successful restoration of ultramafic ecosystems degraded by mining activities.  相似文献   

14.
Perspectives of plant-associated microbes in heavy metal phytoremediation   总被引:6,自引:0,他引:6  
"Phytoremediation" know-how to do-how is rapidly expanding and is being commercialized by harnessing the phyto-microbial diversity. This technology employs biodiversity to remove/contain pollutants from the air, soil and water. In recent years, there has been a considerable knowledge explosion in understanding plant-microbes-heavy metals interactions. Novel applications of plant-associated microbes have opened up promising areas of research in the field of phytoremediation technology. Various metabolites (e.g., 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophores, organic acids, etc.) produced by plant-associated microbes (e.g., plant growth promoting bacteria, mycorrhizae) have been proposed to be involved in many biogeochemical processes operating in the rhizosphere. The salient functions include nutrient acquisition, cell elongation, metal detoxification and alleviation of biotic/abiotic stress in plants. Rhizosphere microbes accelerate metal mobility, or immobilization. Plants and associated microbes release inorganic and organic compounds possessing acidifying, chelating and/or reductive power. These functions are implicated to play an essential role in plant metal uptake. Overall the plant-associated beneficial microbes enhance the efficiency of phytoremediation process directly by altering the metal accumulation in plant tissues and indirectly by promoting the shoot and root biomass production. The present work aims to provide a comprehensive review of some of the promising processes mediated by plant-associated microbes and to illustrate how such processes influence heavy metal uptake through various biogeochemical processes including translocation, transformation, chelation, immobilization, solubilization, precipitation, volatilization and complexation of heavy metals ultimately facilitating phytoremediation.  相似文献   

15.
Different anthropogenic sources of metals can result from agricultural, industrial, military, mining and urban activities that contribute to environmental pollution. Plants can be grown for phytoremediation to remove or stabilize contaminants in water and soil. Copper (Cu), manganese (Mn) and zinc (Zn) are trace essential metals for plants, although their role in homeostasis in plants must be strictly regulated to avoid toxicity. In this review, we summarize the processes involved in the bioavailability, uptake, transport and storage of Cu, Mn and Zn in plants. The efficiency of phytoremediation depends on several factors including metal bioavailability and plant uptake, translocation and tolerance mechanisms. Soil parameters, such as clay fraction, organic matter content, oxidation state, pH, redox potential, aeration, and the presence of specific organisms, play fundamental roles in the uptake of trace essential metals. Key processes in the metal homeostasis network in plants have been identified. Membrane transporters involved in the acquisition, transport and storage of trace essential metals are reviewed. Recent advances in understanding the biochemical and molecular mechanisms of Cu, Mn and Zn hyperaccumulation are described. The use of plant-bacteria associations, plant-fungi associations and genetic engineering has opened a new range of opportunities to improve the efficiency of phytoremediation. The main directions for future research are proposed from the investigation of published results.  相似文献   

16.
The technique of diffusive gradients in thin films (DGT) has been shown to be a promising tool to assess metal uptake by plants in a wide range of soils. With the DGT technique, diffusion fluxes of trace metals through a diffusion layer towards a resin layer are measured. The DGT technique therefore mimics the metal uptake by plants if uptake is limited by diffusion of the free ion to the plant roots, which may not be the case at high metal supply. This study addresses the capability of DGT to predict cadmium (Cd) uptake by plants at varying Cd supply. To test the performance of DGT in such conditions, we used the chloride (Cl?) enhancement effect, i.e. the increase in Cd solution concentrations—due to chloride complexation of Cd—and Cd uptake with increasing Cl? concentrations, as previously characterized in pot, field and solution culture experiments. The uptake of Cd by spinach was assessed in soil amended with Cd (0.4–10.5 mg Cd kg?1) and NaCl (up to 120 mM) in a factorial design. Treatments with NaNO3 were included as a reference to correct for ionic strengths effects. The effect of Cl? on the shoot Cd concentrations was significant at background Cd but diminished with increasing soil Cd. Increasing Cl? concentrations increased the root area based Cd uptake fluxes by more than a factor of 5 at low soil Cd, but had no significant effect at high soil Cd. Short-term uptake of Cd in spinach from nutrient solutions confirmed these trends. In contrast, increasing Cl? concentrations increased the DGT measured fluxes by a factor of 5 at all Cd levels. As a result, DGT fluxes were able to explain soil Cl? effects on plant Cd concentrations at low but not at high Cd supply. This example illustrates under which conditions DGT mimics trace metal bioavailability. If biouptake is controlled by diffusive limitations, DGT should be a successful tool for predicting ion uptake across different conditions.  相似文献   

17.
Plants take up a wide range of trace metals/metalloids(hereinafter referred to as trace metals)from the soil,some of which are essential but become toxic at high concentrations(e.g.,Cu,Zn,Ni,Co),while others are non-essential and toxic even at relatively low concentrations(e.g.,As,Cd,Cr,Pb,and Hg). Soil contamination of trace metals is an increasing problem worldwide due to intensifying human activities.Trace metal contamination can cause toxicity and growth inhibition in plants,as well as accum...  相似文献   

18.
Transporters of ligands for essential metal ions in plants   总被引:5,自引:1,他引:5  
Essential metals are required for healthy plant growth but can be toxic when present in excess. Therefore plants have mechanisms of metal homeostasis which involve coordination of metal ion transporters for uptake, translocation and compartmentalization. However, very little metal in plants is thought to exist as free ions. A number of small, organic molecules have been implicated in metal ion homeostasis as metal ion ligands to facilitate uptake and transport of metal ions with low solubility and also as chelators implicated in sequestration for metal tolerance and storage. Ligands for a number of essential metals have been identified and proteins involved in the transport of these ligands and of metal-ligand complexes have been characterized. Here we review recent advances in understanding the role of mugineic acid, nicotianamine, organic acids (citrate and malate), histidine and phytate as ligands for iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and nickel (Ni) in plants, and the proteins identified as their transporters.  相似文献   

19.
Low concentrations of some trace metals markedly reduce root elongation rate and cause ruptures to root rhizodermal and outer cortical cells in the elongation zone. The interactions between the trace metals and plant components responsible for these effects are not well understood but may be linked to changes in water uptake, cell turgor and cell wall extensibility. An experiment was conducted to investigate the effects of Al, La, Cu, Gd, Sc and Ru on the saturated hydraulic conductivity of bacterial cellulose (BC)–pectin composites, used as plant cell wall analogs. Hydraulic conductivity was reduced to ≈30% of the initial flow rate by 39 µM Al and 0.6 µM Cu, ≈40% by 4.6 µM La, 3 µM Sc and 4.4 µM Ru and ≈55% by 3.4 µM Gd. Scanning electron microscopy (SEM) revealed changes in the ultrastructure of the composites. The results suggest that trace metal binding decreases the hydraulic conductivity through changes in pectin porosity. The experiment illustrates the importance of metal interactions with pectin, and the implications of such an interaction in plant metal toxicity and in normal cell wall processes.  相似文献   

20.
Summary Five soils of increasing specific surface area (SSA) were loaded to five levels of contamination with Cd, Pb and Cu, and bean plants (Phaseolus vulgaris L.) were grown on the soils for 30 days. A linear correlation was found between the concentration of Cd in the soil solutions and the amount absorbed by the plant per gram root material for four out of the five soils, and, in the case of Cu, for all five soils. Quantitatively, there was insufficient Cd or Cu in the soil solution to account for plant uptake of these metals. The amount of Cd absorbed by plants could also be related to the adsorption density (concentration/SSA soil) of the metal in four of the five soils, whereas the Cu content of plants could be related to the adsorption density of all five soils. It is thought that the metals were removed from the soil solution by root absorption and replenished by metal cations adsorbed onto surface sites in the soil. Consideration of the adsorption density of these metals in the soil may be a useful means to determine the permissible limits for heavy metal application for a wide range of soils. Lead uptake was significantly correlated to total Pb in soils, but not to the adsorption density or soil solution concentrations. The possible interpretation of the results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号