首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase.   总被引:110,自引:0,他引:110  
Beef heart mitochondrial ATPase (F1) exhibited a single binding site for Pi. The interaction with Pi was reversible, partially dependent on the presence of divalent metal ions, and characterized by a dissociation constant at pH 7.5 of 80 micronM. A variety of substances known to influence oxidative phosphorylation or the activity of the soluble ATPase (F1) also influenced Pi binding by the enzyme. Thus aurovertin, an inhibitor of oxidative phosphorylation, which was bound tightly by F1 and inhibited ATPase activity, enhanced Pi binding via a 4-fold increase in the affinity of the enzyme for Pi (KD = 20 micronM) but did not alter binding stoichiometry. Anions such as SO4(2-), SO3(2-), chromate, and 2,4-dinitrophenolate, which stimulated ATPase activity of F1, also enhanced Pi binding. Inhibitors of ATPase activity such as nickel/bathophenanthroline and the protein ATPase inhibitor of Pullman and Monroy (Pullman, M. E., and Monroy, G. C. (1963) J. Biol. Chem. 238, 3762-3769) inhibited Pi binding. The adenine nucleotides ADP, ATP, and the ATP analog adenylyl imidodiphosphate as well as the Pi analog arsenate, also inhibited Pi binding. The observations suggest that the Pi binding site was located in or near an adenine nucleotide binding site on the molecule.  相似文献   

2.
3.
Conditions are described under which crystals are formed with the ATPase enzyme from beef heart mitochondria. Enzyme activity is retained during the crystallization process. Some unit cell parameters have been determined by electron microscopy of negatively stained crystals; comparison with the unit cell crystalline matris inclusions indicates that such inclusions could be ATPase crystals.  相似文献   

4.
5.
R Pougeois  G J Lauquin 《Biochemistry》1985,24(4):1020-1024
The possibility that 4-azido-2-nitrophenyl phosphate (ANPP), a photoreactive derivative of inorganic phosphate (Pi) [Lauquin, G., Pougeois, R., & Vignais, P. V. (1980) Biochemistry 19, 4620-4626], could mimic ATP was investigated. ANPP was hydrolyzed in the dark by sarcoplasmic reticulum Ca2+-ATPase in the presence of Ca2+ but not in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. ANPP was not hydrolyzed by purified mitochondrial F1-ATPase; however, ADP and ATP protected F1-ATPase against ANPP photoinactivation. On the other hand, the trinitrophenyl nucleotide analogues (TNP-ADP, TNP-ATP, and TNP-AMP-PNP), which bind specifically at the two catalytic sites of F1-ATPase [Grubmeyer, C., & Penefsky, H. (1981) J. Biol. Chem. 256, 3718-3727], abolished Pi binding on F1-ATPase; they do not protect F1-ATPase against ANPP photoinactivation. Furthermore, ANPP-photoinactivated F1-ATPase binds the TNP analogues in the same way as the native enzyme. The Pi binding site of F1-ATPase, which is shown to be photolabeled by ANPP, does not appear to be at the gamma-phosphate position of the catalytic sites.  相似文献   

6.
Beef heart mitochondrial ATPase (F1) contained 2 mol of ADP and 1 mol of ATP/mol of enzyme, which resisted removal by Sephadex chromatography with dilute buffers or repeated precipitation with ammonium sulfate. The native enzyme also contained two apparently equivalent binding sites, which participated in readily reversible binding of adenyl-5'-ylimidodiphosphate (AMP-P(NH)P), with a Kd of 1.3 mum. The failure of AMP-P(NH)P to compete effectively with ADP for binding sites on F1 may be related to the failure of the analog to inhibit oxidative phosphorylation. Virtually complete removal of all adenine nucleotides from F1 occurred when the enzyme was chromatographed on columns of Sephadex equilibrated with 50% glycerol. No loss in ATPase activity was observed following removal of nucleotides from the enzyme, which was then capable of binding more than 4 mol of ADP and almost 5 mol of AMP-P(NH)P/mol of protein. Subsequent chromatography on columns of Sephadex equilibrated with dilute buffers containing Mg2+ removed only 1.5 mol of ADP and no AMP-P(NH)P from the enzyme. Reconstitution of F1 with ADP or with almost 5 mol of AMP-P(NH)P resulted in preparations that exhibited an undiminished capacity to restore oxidative phosphorylation in F1-deficient submitochondrial particles.  相似文献   

7.
Aurovertin forms a complex with soluble beef heart mitochondrial ATPase (F1) while exhibiting a biphasic fluorence enhancement. The effect of substrate, activators and inhibitors of F11 of the fluorescence of the aurovertin-F1 complex is reported. The aurovertin-F1 complex can exist in two different states, one showing low fluorescence and the other with high fluorescence. Transition into the low fluorescence state is induced by various nucleoside triphosphates (ATP ± Mg2+, ITP ± Mg2+, GIP + Gg2+, and AMP-P(NH)P ± Mg2+). The rate and extent of fluorescence decrease caused by nucleotide addition (except that caused by ATP) is dependent on the presence of added Mg2+. The inhibitors of ATPase activity (AMP-P(NH)P, GMP-P(NH)P and EDTA) at concentrations that inhibit hydrolysis of ATP did not prevent the ATP induced decrease of aurovertin fluorescence. EDTA at high concentration (>0.4 mM) enhanced the effect of ADP.The complex of aurovertin with F1 that had previously been treated with butanedione loses sensitivity to ATP. Addition of ADP to the system containing butanedione-treated enzyme caused a 2-fold greater enhancement of fluorescence than the addition of ADP to the control system. In contrast to the butanedione-treated enzyme, the complex of aurovertin with F1 previously treated at pH 5.6 loses sensitivity to ADP. Addition of ATP to this system lowered the fluorescence as in the system containing native enzyme.On the basis of the analyses of the aurovertin fluorescence changes and hydrolytic activity of F1, the existence of several types of ligand binding sties with varying degrees of specificity are proposed. It is further proposed that these sites are important in control of the conformation and the catalytic properties of the ATPase molecule.  相似文献   

8.
The photoaffinity label, arylazido aminopropionyl ATP1, brings about a photodependent inhibition of mitochondrial F1-ATPase and an associated specific covalent labeling of the soluble enzyme. In addition the ATP analog can act as a substrate when incubated with F1-ATPase in the dark.  相似文献   

9.
S M Schuster 《Biochemistry》1979,18(7):1162-1167
The effect of organic solvents on the beef heart mitochondrial ATP-base-catalyzed ATP and ITP hydrolysis was examined. It was observed that numerous organic solvents stimulated ATP hydrolysis while ITP hydrolysis was inhibited. Methanol at 20% (v/v) was found to stimulate ATP hydrolysis by over 300%, while at the same methanol concentration ITP hydrolysis was inhibited approximately 50%. In the presence of 20% methanol, ATP hydrolysis exhibited linear plots of 1/[ATP] vs. 1/v, while in the absence of methanol negative cooperativity was observed. These data can be interpreted to imply that the catalytic and regulatory sites of the mitochondrial ATPase are being dissociated 20% methanol. The effect of methanol on the hydrolysis of ATP and ITP was examined as a function of pH. It was found that, at high pH in totally aqueous solutions, the hydrolysis of ATP and ITP was inhibited, while the presence of 20% methanol either caused the hydrolytic rate to peak and remain constant above pH 8 (with ATP as substrate) or caused the rate of hydrolysis to continue to increase above pH 8 (when ITP was the substrate). These data are interpreted to indicate that an acidic group in the active site may be ionizing, limiting the ATPase-catalyzed hydrolytic rate, and, with 20% methanol, this ionization was inhibited.  相似文献   

10.
11.
12.
ATP concentration modulates oxygen exchange catalyzed by purified, soluble mitochondrial ATPase during ATP hydrolysis so that water oxygen incorporation into each Pi formed increases markedly as ATP concentration is lowered. This behavior is readily explained by catalytic cooperativity between subunits of the ATPase. However, other reasonable explanations also need consideration. A new approach for assessing these various explanations is used, based on measurement of the [18O]Pi species formed by hydrolysis of ATP highly labeled with 18O in the gamma-phosphoryl group. The results and other supporting data give what appears to be the most compelling evidence yet attained for alternating site catalytic cooperativity in an enzymic catalysis.  相似文献   

13.
The photoaffinity phosphate analogue 4-azido-2 nitrophenyl phosphate (ANPP) was shown previously (Pougeois, R., Lauquin, G. J.-M., and Vignais, P. V. (1983) Biochemistry 22, 1241-1245) to bind covalently and specifically to a single catalytic site on one of the three beta-subunits of the isolated chloroplast coupling factor 1 (CF(1)). Modification by ANPP strongly inhibited ATP hydrolysis activity. In this study, we examined labeling of membrane-bound CF(1) by ANPP by exposing thylakoid membranes to increasing concentrations of the reagent. ANPP exhibited saturable binding to two sites on CF(1), one on the beta-subunit and one on the alpha-subunit. Labeling by ANPP resulted in the complete inhibition of both ATP synthesis and ATP hydrolysis by the membrane-bound enzyme. Labeling of both sites by ANPP was reduced by more than 80% in the presence of P(i) (> or = 10 mM) and ATP (> or = 0.5 mM). ADP was less effective in competing with ANPP for binding, giving a maximum of approximately 35% inhibition at concentrations > or = 2 mM. ANPP-labeled tryptic peptides of the alpha-subunit were isolated and sequenced. The majority of the probe was contained in three peptides corresponding to residues Gln(173) to Arg(216), Gly(217) to Arg(253), and His(256) to Arg(272) of the alpha-subunit. In the mitochondrial F(1) (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), all three analogous peptides are located within the nucleotide binding pocket and within close proximity to the gamma-phosphate binding site. The data indicate, however, that the azidophenyl group of bound ANPP is oriented at approximately 180 degrees in the opposite direction to the adenine binding site with reference to the phosphate binding site on the alpha-subunit. The study has confirmed that ANPP is a bona fide phosphate analogue and suggests that it specifically targets the gamma-phosphate binding site within the nucleotide binding pockets on the alpha- and beta-subunits of CF(1). The study also indicates that in the resting state of the chloroplast F(1)-F(0) complex both the alpha- and beta-subunits are structurally asymmetric.  相似文献   

14.
A facile and high-yield synthesis of a new ATP analogue, 2-[(4-azido-2-nitrophenyl)amino]ethyl triphosphate (NANTP), is described. NANTP and ATP are hydrolyzed by skeletal myosin subfragment 1 (SF1) at comparable rates in the presence of Ca2+, Mg2+, or NH4+-EDTA. NANTP is also cleaved but less readily by mitochondrial F1-ATPase and by (Na+ + K+)-ATPase from dog brain and hog kidney. F-Actin markedly activates NANTP cleavage by SF1 in the presence of Mg2+, suggesting that the diphosphate product NANDP is slow to be released from the enzyme. [alpha-32P]NANDP binds to a single site on SF1 (KA = 1 X 10(6) M-1) with an affinity identical with that of ADP. The absorption maximum of NANDP was shifted from 474 to 467 nm upon binding to SF1, suggesting that the purine binding site has a dielectric constant of about 45. NANDP was trapped in nearly stoichiometric amounts at the active site by cross-linking SH1 and SH2 with N,N'-p-phenylenedimaleimide (pPDM) or by chelation with cobalt (III) phenanthroline [Wells, J., & Yount, R. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966]. The trapped [beta-32P]NANDP X SF1 complex, like the comparable ADP X SF1 complex, was stable for days at 0 degree C and could be purified free of extraneous analogue by ammonium sulfate precipitation and gel filtration. Photolysis of the purified complex gave greater than 50% covalent incorporation of the trapped NANDP into the 95-kilodalton (kDa) heavy chain of SF1. Limited trypsinization and analysis by gel electrophoresis showed that greater than 95% of the bound label was associated with the 25-kDa NH2-terminal peptide. Without trapping, NANDP labeling of SF1 was nonspecific and was not prevented by addition of a large excess of ATP. This new approach of trapping photoaffinity analogues by cross-linking agents before photolysis may prove to be of general usefulness in increasing the specificity and extent of labeling of enzymes that undergo substrate-induced conformation changes.  相似文献   

15.
Highly purified mitochondrial chloroform-released beef heart ATPase had molecular weight 330 000, five bands (alpha, beta, gamma, delta, epsilon) in sodium dodecyl sulfate gel electrophoresis and could restore the oxidative-phosphorylation function of A particles. Maximal inhibition (90%) of the enzyme by N,N'-dicyclohexylcarbodiimide was achieved at a molar ratio of inhibitor to protein of 30 : 1. Chloroform introduced into an aqueous solution of beef heart coupling factor I protected it from cold inactivation.  相似文献   

16.
17.
The effect of 4-azido-2-nitrophenyl phosphate (ANPP), a photoreactive analogue of phosphate, on the phosphate carrier of pig-heart mitochondria has been investigated. In the dark, ANPP inhibits the transport of phosphate in a competitive manner with a Ki of 3.2 mM. Upon photoirradiation with visible light, [32P]ANPP binds covalently to the phosphate carrier and the inhibition becomes irreversible. Both the inhibition of phosphate transport and the incorporation of [32P]ANPP into the phosphate carrier depend on the concentration of the inhibitor and the pH of the medium. Incubation of the mitochondria with phosphate during illumination in the presence of ANPP protects the carrier against inactivation and decreases the amount of radioactivity which is found to be associated with the purified protein. By extrapolation it is calculated that at 100% inactivation of the phosphate carrier 0.35 mol of reagent are bound per mol of 33 kDa carrier protein. It is concluded that ANPP can be used for photoaffinity labeling of the mitochondrial phosphate carrier at the substrate-binding site.  相似文献   

18.
The activity of the lipid-depleted, oligomycin-sensitive mitochondrial ATPase has been measured in the presence of liposomes prepared from mixtures of phosphatidylglycerol and phosphatidylglycerol lysine. Enzyme activity increased linearly with an increase in the negative charge of liposomes prepared from the phosphatidylglycerol-phosphatidylglycerol lysine mixtures. The electrophoretic mobility and activating capacity of liposomes of several other phospholipids were determined. A linear relationship between electrophoretic mobility of the liposomes and oligomycin-sensitive activity was again apparent. These observations demonstrate that the activity of the ATPase is directly proportional to the ionic charge on phospholipid activators if the acyl chain composition of the phosphoglycerides is relatively constant.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号