首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinesin molecular motors perform a myriad of intracellular transport functions. While their mechanochemical mechanisms are well understood and well-conserved throughout the superfamily, the cargo-binding and regulatory mechanisms governing the activity of kinesins are highly diverse and, in general, incompletely characterized. Here we present evidence from bioinformatic predictions indicating that most kinesin superfamily members contain significant regions of intrinsically disordered (ID) residues. ID regions can bind to multiple partners with high specificity and are highly labile to post-translational modification and degradation signals. In kinesins, the predicted ID regions are primarily found in areas outside the motor domains, where primary sequences diverge by family, suggesting that the ID may be a critical structural element for determining the functional specificity of individual kinesins. To support this concept, we present a systematic analysis of the kinesin superfamily, family by family, for predicted ID regions. We combine this analysis with a comprehensive review of kinesin-binding partners and post-translational modifications. We find two key trends across the entire kinesin superfamily. First, ID residues tend to be in the tail regions of kinesins, opposite the superfamily-conserved motor domains. Second, predicted ID regions correlate to regions that are known to bind to cargoes and/or undergo post-translational modifications. We therefore propose that the ID residue is a structural element utilized by the kinesin superfamily in order to impart functional specificity to individual kinesins.  相似文献   

2.
3.
Kinesins are molecular motors that transport various cargoes along microtubule tracks using energy derived from ATP hydrolysis. Although the motor domains of kinesins are structurally similar, the family contains members that move on microtubules in opposite directions. Recent biochemical and biophysical studies of several kinesins make it possible to identify structural elements responsible for the different directionality, suggesting that reversal of the motor movement can be achieved through small, local changes in the protein structure.  相似文献   

4.
5.
Active transport along the microtubule lattice is a complex process that involves both the Kinesin and Dynein superfamily of motors. Transportation requires sophisticated regulation much of which occurs through the motor's tail domain. However, a significant portion of this regulation also occurs through structural changes that arise in the motor and the microtubule upon binding. The most obvious structural change being the manifestation of asymmetry. To a first approximation in solution, kinesin dimers exhibit twofold symmetry, and microtubules exhibit helical symmetry. The higher symmetries of both the kinesin dimers and microtubule lattice are lost on formation of the kinesin–microtubule complex. Loss of symmetry has functional consequences such as an asymmetric hand‐over‐hand mechanism in plus‐end‐directed kinesins, asymmetric microtubule binding in the Kinesin‐14 family, spatially biased stepping in dynein and cooperative binding of additional motors to the microtubule. This review focusses on how the consequences of asymmetry affect regulation of motor heads within a dimer, dimers within an ensemble of motors, and suggests how these asymmetries may affect regulation of active transport within the cell.  相似文献   

6.
Polarized kinesin‐driven transport is crucial for development and maintenance of neuronal polarity. Kinesins are thought to recognize biochemical differences between axonal and dendritic microtubules in order to deliver their cargoes to the appropriate domain. To identify kinesins that mediate polarized transport, we prepared constitutively active versions of all the kinesins implicated in vesicle transport and expressed them in cultured hippocampal neurons. Seven kinesins translocated preferentially to axons and five translocated into both axons and dendrites. None translocated selectively to dendrites. Highly homologous members of the same subfamily displayed distinctly different translocation preferences and were differentially regulated during development. By expressing chimeric kinesins, we identified two microtubule‐binding elements within the motor domain that are important for selective translocation. We also discovered elements in the dimerization domain of kinesin‐2 motors that contribute to their selective translocation. These observations indicate that selective interactions between kinesin motor domains and microtubules can account for polarized transport to the axon, but not for selective dendritic transport.  相似文献   

7.
Muresan  Virgil 《Brain Cell Biology》2000,29(11-12):799-818
A large number of membrane-bounded organelles, protein complexes, and mRNAs are transported along microtubules to different locations within the neuronal axon. Axonal transport in the anterograde direction is carried out by members of a superfamily of specialized motor proteins, the kinesins. All kinesins contain a conserved motor domain that hydrolyses ATP to generate movement along microtubules. Regions outside the motor domain are responsible for cargo binding and regulation of motor activity. Present in a soluble, inactive form in the cytoplasm, kinesins are activated upon cargo binding. Selective targeting of different types of kinesin motors to specific cargoes is directed by amino acid sequences situated in their variable tails. Cargo proteins with specific function at their destination, bind directly to specific kinesins for transport. Whereas most kinesins move to microtubule plus-ends, a small number of them move to microtubule minus-ends, and may participate in retrograde axonal transport. Axonal transport by kinesins has a logic: Fully assembled, multisubunit, functional complexes (e.g., ion channel complexes, signaling complexes, RNA-protein complexes) are transported to their destination by kinesin motors that interact transiently (i.e., during transport only) with one of the complexes' subunits.  相似文献   

8.
Microtubule length control is essential for the assembly and function of the mitotic spindle. Kinesin-like motor proteins that directly attenuate microtubule dynamics make key contributions to this control, but the specificity of these motors for different subpopulations of spindle microtubules is not understood. Kif18A (kinesin-8) localizes to the plus ends of the relatively slowly growing kinetochore fibers (K-fibers) and attenuates their dynamics, whereas Kif4A (kinesin-4) localizes to mitotic chromatin and suppresses the growth of highly dynamic, nonkinetochore microtubules. Although Kif18A and Kif4A similarly suppress microtubule growth in vitro, it remains unclear whether microtubule-attenuating motors control the lengths of K-fibers and nonkinetochore microtubules through a common mechanism. To address this question, we engineered chimeric kinesins that contain the Kif4A, Kif18B (kinesin-8), or Kif5B (kinesin-1) motor domain fused to the C-terminal tail of Kif18A. Each of these chimeric kinesins localizes to K-fibers; however, K-fiber length control requires an activity specific to kinesin-8s. Mutational studies of Kif18A indicate that this control depends on both its C-terminus and a unique, positively charged surface loop, called loop2, within the motor domain. These data support a model in which microtubule-attenuating kinesins are molecularly “tuned” to control the dynamics of specific subsets of spindle microtubules.  相似文献   

9.
Formation of cilia, microtubule‐based structures that function in propulsion and sensation, requires Kif3a, a subunit of Kinesin II essential for intraflagellar transport (IFT). We have found that, Kif3a is also required to organize centrioles. In the absence of Kif3a, the subdistal appendages of centrioles are disorganized and lack p150Glued and Ninein. Consequently, microtubule anchoring, centriole cohesion and basal foot formation are abrogated by loss of Kif3a. Kif3a localizes to the mother centriole and interacts with the Dynactin subunit p150Glued. Depletion of p150Glued phenocopies the effects of loss of Kif3a, indicating that Kif3a recruitment of p150Glued is critical for subdistal appendage formation. The transport functions of Kif3a are dispensable for subdistal appendage organization as mutant forms of Kif3a lacking motor activity or the motor domain can restore p150Glued localization. Comparison to cells lacking Ift88 reveals that the centriolar functions of Kif3a are independent of IFT. Thus, in addition to its ciliogenic roles, Kif3a recruits p150Glued to the subdistal appendages of mother centrioles, critical for centrosomes to function as microtubule‐organizing centres.  相似文献   

10.
Kinesin motor proteins drive the transport of cellular cargoes along microtubule tracks. How motor protein activity is controlled in cells is unresolved, but it is likely coupled to changes in protein conformation and cargo association. By applying the quantitative method fluorescence resonance energy transfer (FRET) stoichiometry to fluorescent protein (FP)-labeled kinesin heavy chain (KHC) and kinesin light chain (KLC) subunits in live cells, we studied the overall structural organization and conformation of Kinesin-1 in the active and inactive states. Inactive Kinesin-1 molecules are folded and autoinhibited such that the KHC tail blocks the initial interaction of the KHC motor with the microtubule. In addition, in the inactive state, the KHC motor domains are pushed apart by the KLC subunit. Thus, FRET stoichiometry reveals conformational changes of a protein complex in live cells. For Kinesin-1, activation requires a global conformational change that separates the KHC motor and tail domains and a local conformational change that moves the KHC motor domains closer together.  相似文献   

11.
Kinesin motor proteins comprise an ATPase superfamily that works hand in hand with microtubules in every eukaryote. The mitotic kinesins, by virtue of their potential therapeutic role in cancerous cells, have been a major focus of research for the past 28 years since the discovery of the canonical Kinesin-1 heavy chain. Perhaps the simplest player in mitotic spindle assembly, Kinesin-5 (also known as Kif11, Eg5, or kinesin spindle protein, KSP) is a plus-end-directed motor localized to interpolar spindle microtubules and to the spindle poles. Comprised of a homotetramer complex, its function primarily is to slide anti-parallel microtubules apart from one another. Based on multi-faceted analyses of this motor from numerous laboratories over the years, we have learned a great deal about the function of this motor at the atomic level for catalysis and as an integrated element of the cytoskeleton. These data have, in turn, informed the function of motile kinesins on the whole, as well as spearheaded integrative models of the mitotic apparatus in particular and regulation of the microtubule cytoskeleton in general. We review what is known about how this nanomotor works, its place inside the cytoskeleton of cells, and its small-molecule inhibitors that provide a toolbox for understanding motor function and for anticancer treatment in the clinic.  相似文献   

12.
Motile kinesins are motor proteins that move unidirectionally along microtubules as they hydrolyze ATP. They share a conserved motor domain (head) which harbors both the ATP‐ and microtubule‐binding activities. The kinesin that has been studied most moves toward the microtubule (+)‐end by alternately advancing its two heads along a single protofilament. This kinesin is the subject of this review. Its movement is associated to alternate conformations of a peptide, the neck linker, at the C‐terminal end of the motor domain. Recent progress in the understanding of its structural mechanism has been made possible by high‐resolution studies, by cryo electron microscopy and X‐ray crystallography, of complexes of the motor domain with its track protein, tubulin. These studies clarified the structural changes that occur as ATP binds to a nucleotide‐free microtubule‐bound kinesin, initiating each mechanical step. As ATP binds to a head, it triggers orientation changes in three rigid motor subdomains, leading the neck linker to dock onto the motor core, which directs the other head toward the microtubule (+)‐end. The relationship between neck linker docking and the orientations of the motor subdomains also accounts for kinesin's processivity, which is remarkable as this motor protein only falls off from a microtubule after taking about a hundred steps. As tools are now available to determine high‐resolution structures of motor domains complexed to their track protein, it should become possible to extend these studies to other kinesins and relate their sequence variations to their diverse properties.  相似文献   

13.
Kinesin-13 proteins depolymerize microtubules in an ATP hydrolysis-dependent manner. The coupling between these two activities remains unclear. Here, we first studied the role of the kinesin-13 subfamily-specific loop 2 and of the KVD motif at the tip of this loop. Shortening the loop, the lysine/glutamate interchange and the additional Val to Ser substitution all led to Kif2C mutants with decreased microtubule-stimulated ATPase and impaired depolymerization capability. We rationalized these results based on a structural model of the Kif2C-ATP-tubulin complex derived from the recently determined structures of kinesin-1 bound to tubulin. In this model, upon microtubule binding Kif2C undergoes a conformational change governed in part by the interaction of the KVD motif with the tubulin interdimer interface. Second, we mutated to an alanine the conserved glutamate residue of the switch 2 nucleotide binding motif. This mutation blocks motile kinesins in a post-conformational change state and inhibits ATP hydrolysis. This Kif2C mutant still depolymerized microtubules and yielded complexes of one Kif2C with two tubulin heterodimers. These results demonstrate that the structural change of Kif2C-ATP upon binding to microtubule ends is sufficient for tubulin release, whereas ATP hydrolysis is not required. Overall, our data suggest that the conformation reached by kinesin-13s upon tubulin binding is similar to that of tubulin-bound, ATP-bound, motile kinesins but that this conformation is adapted to microtubule depolymerization.  相似文献   

14.
Kinesin-5, a widely conserved motor protein required for assembly of the bipolar mitotic spindle in eukaryotes, forms homotetramers with two pairs of motor domains positioned at opposite ends of a dumbbell-shaped molecule [1-3]. It has long been assumed that this configuration of motor domains is the basis of kinesin-5's ability to drive relative sliding of microtubules [2, 4, 5]. Recently, it was suggested that in addition to the N-terminal motor domain, kinesin-5 also has a nonmotor microtubule binding site in its C terminus [6]. However, it is not known how the nonmotor domain contributes to motor activity, or how a kinesin-5 tetramer utilizes a combination of four motor and four nonmotor microtubule binding sites for its microtubule organizing functions. Here we show, in single molecule assays, that kinesin-5 homotetramers require the nonmotor C terminus for crosslinking and relative sliding of two microtubules. Remarkably, this domain enhances kinesin-5's microtubule binding without substantially reducing motor activity. Our?results suggest that tetramerization of kinesin-5's low-processivity motor domains is not sufficient for microtubule sliding because the motor domains alone are unlikely to?maintain persistent microtubule crosslinks. Rather, kinesin-5 utilizes nonmotor microtubule binding sites to tune its microtubule attachment dynamics, enabling it to efficiently align and sort microtubules during metaphase spindle assembly and function.  相似文献   

15.
Kinesin is an ATP-driven motor protein that plays important physiological roles in intracellular transport, mitosis and meiosis, control of microtubule dynamics, and signal transduction. The kinesin family is classified into subfamilies. Kinesin species derived from vertebrates have been well characterized. In contrast, plant kinesins have yet to be adequately characterized. In this study, we expressed the motor domain of a novel rice plant-specific kinesin, K16, in Escherichia coli, and then determined its enzymatic characteristics and compared them with those of kinesin 1. Our findings demonstrated that the rice kinesin motor domain has different enzymatic properties from those of well known kinesin 1.  相似文献   

16.
The kinesin motor proteins generate directional movement along microtubules and are involved in many vital processes, including cell division, in eukaryotes. The kinesin superfamily is characterized by a conserved motor domain of approximately 320 residues. Dimeric constructs of N and C class kinesins, with the motor domains at opposite ends of the heavy chain, move towards microtubule plus and minus ends, respectively. Their crystal structures differ mainly in the region linking the motor domain core to the alpha-helical coiled coil dimerization domain. Chimeric kinesins show that regions outside of the motor domain core determine the direction of movement and mutations in the linker region have a strong effect on motility. Recent work on chimeras and mutants is discussed in a structural context giving insights to possible molecular mechanisms of kinesin directionality and motility.  相似文献   

17.
The conserved Fused kinase plays vital but divergent roles in many organisms from Hedgehog signalling in Drosophila to polarization and chemotaxis in Dictyostelium. Previously we have shown that Arabidopsis Fused kinase termed TWO‐IN‐ONE (TIO) is essential for cytokinesis in both sporophytic and gametophytic cell types. Here using in vivo imaging of GFP‐tagged microtubules in dividing microspores we show that TIO is required for expansion of the phragmoplast. We identify the phragmoplast‐associated kinesins, PAKRP1/Kinesin‐12A and PAKRP1L/Kinesin‐12B, as TIO‐interacting proteins and determine TIO‐Kinesin‐12 interaction domains and their requirement in male gametophytic cytokinesis. Our results support the role of TIO as a functional protein kinase that interacts with Kinesin‐12 subfamily members mainly through the C‐terminal ARM repeat domain, but with a contribution from the N‐terminal kinase domain. The interaction of TIO with Kinesin proteins and the functional requirement of their interaction domains support the operation of a Fused kinase signalling module in phragmoplast expansion that depends upon conserved structural features in diverse Fused kinases.  相似文献   

18.
Cells have evolved sophisticated molecular machinery, such as kinesin motor proteins and microtubule filaments, to support active intracellular transport of cargo. While kinesins tail domain binds to a variety of cargoes, kinesins head domains utilize the chemical energy stored in ATP molecules to step along the microtubule lattice. The long, stiff microtubules serve as tracks for long-distance intracellular transport.These motors and filaments can also be employed in microfabricated synthetic environments as components of molecular shuttles 1. In a frequently used design, kinesin motors are anchored to the track surface through their tails, and functionalized microtubules serve as cargo carrying elements, which are propelled by these motors. These shuttles can be loaded with cargo by utilizing the strong and selective binding between biotin and streptavidin. The key components (biotinylated tubulin, streptavidin, and biotinylated cargo) are commercially available.Building on the classic inverted motility assay 2, the construction of molecular shuttles is detailed here. Kinesin motor proteins are adsorbed to a surface precoated with casein; microtubules are polymerized from biotinylated tubulin, adhered to the kinesin and subsequently coated with rhodamine-labeled streptavidin. The ATP concentration is maintained at subsaturating concentration to achieve a microtubule gliding velocity optimal for loading cargo 3. Finally, biotinylated fluorescein-labeled nanospheres are added as cargo. Nanospheres attach to microtubules as a result of collisions between gliding microtubules and nanospheres adhering to the surface.The protocol can be readily modified to load a variety of cargoes such as biotinylated DNA4, quantum dots 5 or a wide variety of antigens via biotinylated antibodies 4-6.Download video file.(57M, mov)  相似文献   

19.
Inhibition of the microtubule (MT) motor protein Eg5 results in a mitotic arrest due to the formation of monopolar spindles, making Eg5 an attractive target for anti-cancer therapies. However, Eg5-independent pathways for bipolar spindle formation exist, which might promote resistance to treatment with Eg5 inhibitors. To identify essential components for Eg5-independent bipolar spindle formation, we performed a genome-wide siRNA screen in Eg5-independent cells (EICs). We find that the kinase Aurora A and two kinesins, MCAK and Kif18b, are essential for bipolar spindle assembly in EICs and in cells with reduced Eg5 activity. Aurora A promotes bipolar spindle assembly by phosphorylating Kif15, hereby promoting Kif15 localization to the spindle. In turn, MCAK and Kif18b promote bipolar spindle assembly by destabilizing the astral MTs. One attractive way to interpret our data is that, in the absence of MCAK and Kif18b, excessive astral MTs generate inward pushing forces on centrosomes at the cortex that inhibit centrosome separation. Together, these data suggest a novel function for astral MTs in force generation on spindle poles and how proteins involved in regulating microtubule length can contribute to bipolar spindle assembly.  相似文献   

20.
Microtubules and the Kinesin heavy chain, the force-generating component of the plus end-directed microtubule motor Kinesin I are required for the localisation of oskar mRNA to the posterior pole of the Drosophila oocyte, an essential step in the determination of the anteroposterior axis. We show that the Kinesin heavy chain is also required for the posterior localisation of Dynein, and for all cytoplasmic movements within the oocyte. Furthermore, the KHC localises transiently to the posterior pole in an oskar mRNA-independent manner. Surprisingly, cytoplasmic streaming still occurs in kinesin light chain null mutants, and both oskar mRNA and Dynein localise to the posterior pole. Thus, the Kinesin heavy chain can function independently of the light chain in the oocyte, indicating that it associates with its cargoes by a novel mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号