首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to reveal the actual biological function of protein glycosylation. Recently, significant improvements have been made in the characterization of intact glycopeptides, ranging from enrichment and separation, mass spectroscopy (MS) detection, to bioinformatics analysis. In this review, we recapitulated currently available intact glycopeptide characterization methods with respect to their advantages and limitations as well as their potential applications.  相似文献   

2.
Changes in the glycosylation of some serum proteins are associated with certain diseases. In this study, we performed simultaneous site-specific glycosylation analysis of abundant serum glycoproteins by LC/Qq-TOF MS of human serum tryptic digest, the albumin of which was depleted. The glycopeptide peaks on the chromatogram were basically assigned by database searching with modified peak-list text files of MS/MS spectra and then based on mass differences of glycan units from characterized glycopeptides. Glycopeptide of IgG, haptoglobin and ceruloplasmin were confirmed by means of a comparison of their retention times and m/z values with those obtained by LC/MS of commercially available glycoproteins. Mass spectrometric carbohydrate heterogeneity in the assigned glycopeptides was analyzed by an additional LC/MS. We successfully demonstrated site-specific glycosylation of 23 sites in abundant serum glycoproteins.  相似文献   

3.
A gel-based method for a mass spectrometric site-specific glycoanalysis was developed using a recombinant glycoprotein expressed in two different cell lines. Hydrophilic interaction liquid chromatography at nanoscale level was used to enrich for glycopeptides prior to MS. The glycoprofiling was performed using matrix-assisted laser desorption/ionization MS and MS/MS. The method proved to be fast and sensitive and furthermore yielded a comprehensive site-specific glycan analysis, allowing a differentiation of the glycoprofiles of the two sources of recombinant protein, both comprising N-glycans of a highly heterogeneous nature. To test the potential of the method, tissue inhibitor of metalloproteinases-1 (TIMP-1), a secreted low abundance N-glycosylated protein and a cancer marker, was purified in an individual-specific manner from plasma of five healthy individuals using IgG depletion and immunoaffinity chromatography. The corresponding TIMP-1 glycoprofiles were determined to be highly similar, comprising mainly bi- and triantennary complex oligosaccharides. Additionally it was shown that platelet-derived TIMP-1 displayed a similar glycoprofile. This is the first study to investigate the glycosylation of naturally occurring human TIMP-1, and the high similarity of the glycoprofiles showed that individual-specific glycosylation variations of TIMP-1 are minimal. In addition, the results showed that TIMP-1 derived from platelets and plasma is similarly glycosylated. This comprehensive and rapid glycoprofiling of a low abundance glycoprotein performed in an individual-specific manner allows for future studies of glycosylated biomarkers for person-specific detection of altered glycosylation and may thus allow early detection and monitoring of diseases.  相似文献   

4.
A new hydrophilic interaction chromatography (HILIC) column packed with amide 1.7 μm sorbent was applied to the characterization of glycoprotein digests. Due to the impact of the hydrophilic carbohydrate moiety, glycopeptides were more strongly retained on the column and separated from the remaining nonglycosylated peptides present in the digest. The glycoforms of the same parent peptide were also chromatographically resolved and analyzed using ultraviolet and mass spectrometry detectors. The HILIC method was applied to glyco-profiling of a therapeutic monoclonal antibody and proteins with several N-linked and O-linked glycosylation sites. For characterization of complex proteins with multiple glycosylation sites we utilized 2D LC, where RP separation dimension was used for isolation of glycopeptides and HILIC for resolution of peptide glycoforms. The analysis of site-specific glycan microheterogeneity was illustrated for the CD44 fusion protein.  相似文献   

5.
Extensive site-specific glycosylation analysis of individual glycoproteins is difficult due to the nature and complexity of glycosylation in proteins. In protein mixtures, these analyses are even more difficult. We present an approach combining nonspecific protease digestion, nanoflow liquid chromatography, and tandem mass spectrometry (MS/MS) aimed at comprehensive site-specific glycosylation analysis in protein mixtures. The strategy described herein involves the analysis of a complex mixture of glycopeptides generated from immobilized-Pronase digestion of a cocktail of glycoproteins consisting of bovine lactoferrin, kappa casein, and bovine fetuin using nanoflow liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (nano-LC-Q-TOF MS). The resulting glycopeptides were chromatographically separated on a micro fluidic chip packed with porous graphitized carbon and analyzed via MS and MS/MS analyses. In all, 233 glycopeptides (identified based on composition and including isomers) corresponding to 18 glycosites were observed and determined in a single mixture. The glycopeptides were a mixture of N-linked glycopeptides (containing high mannose, complex and hybrid glycans) and O-linked glycopeptides (mostly sialylated). Results from this study were comprehensive as detailed glycan microheterogeneity information was obtained. This approach presents a platform to simultaneously characterize N- and O-glycosites in the same mixture with extensive site heterogeneity.  相似文献   

6.
Qian Y  Zhang X  Zhou L  Yun X  Xie J  Xu J  Ruan Y  Ren S 《Glycoconjugate journal》2012,29(5-6):399-409
Human LOX-1/OLR 1 plays a key role in atherogenesis and endothelial dysfunction. The N-glycosylation of LOX-1 has been shown to affect its biological functions in vivo and modulate the pathogenesis of atherosclerosis. However, the N-glycosylation pattern of LOX-1 has not been described yet. The present study was aimed at elucidating the N-glycosylation of recombinant human LOX-1 with regard to N-glycan profile and N-glycosylation sites. Here, an approach using nonspecific protease (Pronase E) digestion followed by MALDI-QIT-TOF MS and multistage MS (MS(3)) analysis is explored to obtain site-specific N-glycosylation information of recombinant human LOX-1, in combination with glycan structure confirmation through characterizing released glycans using tandem MS. The results reveal that N-glycans structures as well as their corresponding attached site of LOX-1 can be identified simultaneously by direct MS analysis of glycopeptides from non-specific protease digestion. With this approach, one potential glycosylation site of recombinant human LOX-1 on Asn(139) is readily identified and found to carry heterogeneous complex type N-glycans. In addition, manual annotation of multistage MS data utilizing diagnostic ions, which were found to be particularly useful in defining the structure of glycopeptides and glycans was addressed for proper spectra interpretation. The findings described herein will shed new light on further research of the structure-function relationships of LOX-1?N-glycan.  相似文献   

7.
The cell surface glycoprotein γ-glutamyl transpeptidase (GGT) was isolated from healthy human kidney and liver to characterize its glycosylation in normal human tissue in vivo. GGT is expressed by a single cell type in the kidney. The spectrum of N-glycans released from kidney GGT constituted a subset of the N-glycans identified from renal membrane glycoproteins. Recent advances in mass spectrometry enabled us to identify the microheterogeneity and relative abundance of glycans on specific glycopeptides and revealed a broader spectrum of glycans than was observed among glycans enzymatically released from isolated GGT. A total of 36 glycan compositions, with 40 unique structures, were identified by site-specific glycan analysis. Up to 15 different glycans were observed at a single site, with site-specific variation in glycan composition. N-Glycans released from liver membrane glycoproteins included many glycans also identified in the kidney. However, analysis of hepatic GGT glycopeptides revealed 11 glycan compositions, with 12 unique structures, none of which were observed on kidney GGT. No variation in glycosylation was observed among multiple kidney and liver donors. Two glycosylation sites on renal GGT were modified exclusively by neutral glycans. In silico modeling of GGT predicts that these two glycans are located in clefts on the surface of the protein facing the cell membrane, and their synthesis may be subject to steric constraints. This is the first analysis at the level of individual glycopeptides of a human glycoprotein produced by two different tissues in vivo and provides novel insights into tissue-specific and site-specific glycosylation in normal human tissues.  相似文献   

8.
Extensive glycosylation of viral glycoproteins is a key feature of the antigenic surface of viruses and yet glycan processing can also be influenced by the manner of their recombinant production. The low yields of the soluble form of the trimeric spike (S) glycoprotein from SARS-CoV-2 has prompted advances in protein engineering that have greatly enhanced the stability and yields of the glycoprotein. The latest expression-enhanced version of the spike incorporates six proline substitutions to stabilize the prefusion conformation (termed SARS-CoV-2 S HexaPro). Although the substitutions greatly enhanced expression whilst not compromising protein structure, the influence of these substitutions on glycan processing has not been explored. Here, we show that the site-specific N-linked glycosylation of the expression-enhanced HexaPro resembles that of an earlier version containing two proline substitutions (2P), and that both capture features of native viral glycosylation. However, there are site-specific differences in glycosylation of HexaPro when compared to 2P. Despite these discrepancies, analysis of the serological reactivity of clinical samples from infected individuals confirmed that both HexaPro and 2P protein are equally able to detect IgG, IgA, and IgM responses in all sera analysed. Moreover, we extend this observation to include an analysis of glycan engineered S protein, whereby all N-linked glycans were converted to oligomannose-type and conclude that serological activity is not impacted by large scale changes in glycosylation. These observations suggest that variations in glycan processing will not impact the serological assessments currently being performed across the globe.  相似文献   

9.
The terminal monosaccharide of cell surface glycoconjugates is typically a sialic acid (SA), and aberrant sialylation is involved in several diseases. Several methodological approaches in sample preparation and subsequent analysis using mass spectrometry (MS) have enabled the identification of glycosylation sites and the characterization of glycan structures. In this paper, we describe a protocol for the selective enrichment of SA-containing glycopeptides using a combination of titanium dioxide (TiO(2)) and hydrophilic interaction liquid chromatography (HILIC). The selectivity of TiO(2) toward SA-containing glycopeptides is achieved by using a low-pH buffer that contains a substituted acid such as glycolic acid to improve the binding efficiency and selectivity of SA-containing glycopeptides to the TiO(2) resin. By combining TiO(2) enrichment of sialylated glycopeptides with HILIC separation of deglycosylated peptides, a more comprehensive analysis of formerly sialylated glycopeptides by MS can be achieved. Here we illustrate the efficiency of the method by the identification of 1,632 unique formerly sialylated glycopeptides from 817 sialylated glycoproteins. The TiO(2)/HILIC protocol requires 2 d and the entire procedure from protein isolation can be performed in <5 d, depending on the time taken to analyze data.  相似文献   

10.
A protocol for the characterization of IgG glycopeptides is described. Central to this scheme is the novel application of an alkaline borate buffer to gel filtration chromatography. The use of this buffer significantly enhances the resolution of glycopeptides. Furthermore, it results in the separation of a unique size class of glycopeptides derived from IgG secreted by murine hybridomas. Although predominantly neutral, these glycopeptides differ both qualitatively and quantitatively by lectin affinity chromatography from the other glycopeptides which are presumably derived from the Fc portion of IgG.  相似文献   

11.
High-performance liquid chromatography with electrospray ionization mass spectrometry (LC/MS) and liquid chromatography with tandem mass spectrometry (LC/MS/MS) were applied to the analysis of the site-specific carbohydrate heterogeneity in erythropoietin (EPO) used as a model of the sialylated glycoprotein. N-linked oligosaccharides were released from recombinant human EPO expressed in Chinese hamster ovary cells enzymatically and reduced with NaBH(4). Many different sialylated oligosaccharides of EPO were separated and characterized by LC/MS equipped with a graphitized carbon column (GCC). Glycosylation sites and the preliminary glycosylation pattern at each glycosylation site were determined by LC/MS of endoproteinase Glu-C-digested EPO. The detailed site-specific carbohydrate heterogeneity caused by the differences in the molecular weight, branch, linkage, and sequence was elucidated by GCC-LC/MS of the N-linked oligosaccharides released from the isolated glycopeptides. Structural details of the isomers were analyzed by LC/MS/MS, and it was indicated that di- and trisialylated tetraantennary oligosaccharides are attached to Asn24, 38, and 83, whereas their isomers, di- and trisialylated triantennary oligosaccharides containing N-acetyllactosamines, are combined with Asn24. Our method is useful for the determination of glycosylation sites, the site-specific carbohydrate heterogeneity of glycoproteins, and the carbohydrate structure.  相似文献   

12.
Protein glycosylation is post-translational modification (PTM) which is important for pharmacokinetics and immunogenicity of recombinant glycoprotein therapeutics. As a result of variations in monosaccharide composition, glycosidic linkages and glycan branching, glycosylation introduces considerable complexity and heterogeneity to therapeutics. The host cell line used to produce the glycoprotein has a strong influence on the glycosylation because different host systems may express varying repertoire of glycosylation enzymes and transporters that contributes to specificity and heterogeneity in glycosylation profiles. In this review, we discuss the types of host cell lines currently used for recombinant therapeutic production, their glycosylation potential and the resultant impact on glycoprotein properties. In addition, we compare the reported glycosylation profiles of four recombinant glycoproteins: immunoglobulin G (IgG), coagulation factor VII (FVII), erythropoietin (EPO) and alpha-1 antitrypsin (A1AT) produced in different mammalian cells to establish the influence of mammalian host cell lines on glycosylation.  相似文献   

13.
The site-specific characterization of the complex glycans in multiglycosylated proteins requires developing methods where the carbohydrates remain covalently bound to the protein. The complexity in the carbohydrate composition of α1-acid glycoprotein (AAG) makes it an ideal model protein for such development. AAG has five N-asparaginyl-linked glycosylation sites, each varying in its bi-, tri-, and tetraantennary glycan content. We present an on-line liquid chromatography/mass spectrometry (LC/MS) method that uses high-low cone voltage switching for in-source fragmentation to determine the structures of the complex glycans present on each site for the two gene products of AAG. High cone voltage caused carbohydrate fragmentation, leading to the generation of signature carbohydrate ions that we used as markers to identify the glycopeptides. Low cone voltage produced minimal carbohydrate fragmentation and enabled the identification and quantification of the intact oligosaccharide structures on each glycopeptide based on its monoisotopic mass and intensity. Quantitation was accomplished by using the intensities of peaks from deconvoluted and deisotoped mass spectra or from the areas of the extracted ion chromatograms from the tryptic peptide maps. The combined results from the two methods can be used to better characterize and quantitate site heterogeneity in multiglycosylated proteins.  相似文献   

14.
Glycosylation is a very important post-translational modification involved in various cellular processes, such as cell adhesion, signal transduction and immune response. Urine is a rich source of glycoproteins and attractive biological fluid for biomarker discovery, owing to its availability, ease of collection, and correlation with pathophysiology of diseases. Although the urinary proteomics have been explored previously, the urinary glycoproteome characterization remains challenging requiring the development and optimization of analytical and bioinformatics methods for protein glycoprofiling. This study describes the high confident identification of 472 unique N-glycosylation sites covering 256 urinary glycoproteins. Besides, 202 unique N-glycosylation sites were identified in low molecular weight endogenous glycopeptides, which belong to 90 glycoproteins. Global site-specific characterization of the N-linked glycan heterogeneity was achieved by intact glycopeptide analysis, revealing 303 unique glycopeptides most of them displaying complex/hybrid glycans composed by sialic acid and fucose. These datasets consist in a valuable resource of glycoproteins and N-glycosylation sites found in healthy human urine that can be further explored in different disorders, in which the N-linked glycosylation may be aberrant.  相似文献   

15.
While glycoproteins are abundant in nature, and changes in glycosylation occur in cancer and other diseases, glycoprotein characterization remains a challenge due to the structural complexity of the biopolymers. This paper presents a general strategy, termed GlyDB, for glycan structure annotation of N-linked glycopeptides from tandem mass spectra in the LC-MS analysis of proteolytic digests of glycoproteins. The GlyDB approach takes advantage of low-energy collision-induced dissociation of N-linked glycopeptides that preferentially cleaves the glycosidic bonds while the peptide backbone remains intact. A theoretical glycan structure database derived from biosynthetic rules for N-linked glycans was constructed employing a novel representation of branched glycan structures consisting of multiple linear sequences. The commonly used peptide identification program, Sequest, could then be utilized to assign experimental tandem mass spectra to individual glycoforms. Analysis of synthetic glycopeptides and well-characterized glycoproteins demonstrate that the GlyDB approach can be a useful tool for annotation of glycan structures and for selection of a limited number of potential glycan structure candidates for targeted validation.  相似文献   

16.
With the increasing demand to provide more detailed quality attributes, more sophisticated glycan analysis tools are highly desirable for biopharmaceutical manufacturing. Here, we performed an intact glycopeptide analysis method to simultaneously analyze the site-specific N- and O-glycan profiles of the recombinant erythropoietin Fc (EPO-Fc) protein secreted from a Chinese hamster ovary glutamine synthetase stable cell line and compared the effects of two commercial culture media, EX-CELL (EX) and immediate advantage (IA) media, on the glycosylation profile of the target protein. EPO-Fc, containing the Fc region of immunoglobulin G1 (IgG1) fused to EPO, was harvested at Day 5 and 8 of a batch cell culture process followed by purification and N- and O-glycopeptide profiling. A mixed anion exchange chromatographic column was implemented to capture and enrich N-linked glycopeptides. Using intact glycopeptide characterization, the EPO-Fc was observed to maintain their individual EPO and Fc N-glycan characteristics in which the EPO region presented bi-, tri-, and tetra-branched N-glycan structures, while the Fc N-glycan displayed mostly biantennary glycans. EPO-Fc protein generated in EX medium produced more complex tetra-antennary N-glycans at each of the three EPO N-sites while IA medium resulted in a greater fraction of bi- and tri-antennary N-glycans at these same sites. Interestingly, the sialylation content decreased from sites 1–4 in both media while the fucosylation progressively increased with a maximum at the final IgG Fc site. Moreover, we observed that low amounts of Neu5Gc were detected and the content increased at the later sampling time in both EX and IA media. For O-glycopeptides, both media produced predominantly three structures, N1F1F0SOG0, N1H1F0S1G0, and N1H1F0S2G0, with lesser amounts of other structures. This intact glycopeptide method can decipher site-specific glycosylation profile and provide a more detailed characterization of N- and O-glycans present for enhanced understanding of the key product quality attributes such as media on recombinant proteins of biotechnology interest.  相似文献   

17.
In this paper, we describe the combination of lectin chromatography with capillary LC coupled to a linear ion trap-Fourier transform mass spectrometer (LTQ/FTMS) to enrich and characterize overexpressed glycoproteins from a cell culture lysate. A well-characterized glycoprotein, recombinant tissue plasminogen activator (rt-PA), was used as a standard, and we demonstrated that the three N-linked glycopeptides (including glycan structures) present in a tryptic digest of the rt-PA standard could be characterized in the new hybrid MS platform. A feature of this approach is that a significant amount of information can be obtained about the carbohydrate structures by direct analysis of the tryptic digest without the need for additional time-consuming sample preparation protocols. A combination of lectins was then studied for improved recovery of captured glycopeptides and was related to the selectivity of different lectins for specific glycosylation motifs. This approach was then extended to the lysate of a cell line routinely used in biotechnology manufacture (Chinese hamster ovary, CHO). This study showed that the combinations of lectins could enrich glycoproteins significantly from a CHO cell lysate. We also demonstrated that with this level of enrichment and with the new hybrid mass spectrometer, we could study the structures of N-linked glycopeptides of rt-PA present in a crude CHO cell lysate, at a ratio of 1:200 (rtPA:total cell lysate protein, w/w) by accurate mass measurement in the FTMS and tandem MSn in the linear ion trap. The generic and high throughput nature of the lectin approach combined with the ability to directly analyze the glycan structures in the tryptic digest suggest that this platform has the potential to routinely monitor glycoprotein products at early stage manufacturing in the biotech industry.  相似文献   

18.
Glycoproteins fulfill many indispensable biological functions, and changes in protein glycosylation have been observed in various diseases. Improved analytical methods are needed to allow a complete characterization of this complex and common post-translational modification. In this study, we present a workflow for the analysis of the microheterogeneity of N-glycoproteins that couples hydrophilic interaction and nanoreverse-phase C18 chromatography to tandem QTOF mass spectrometric analysis. A glycan database search program, GlycoPeptideSearch, was developed to match N-glycopeptide MS/MS spectra with the glycopeptides comprised of a glycan drawn from the GlycomeDB glycan structure database and a peptide from a user-specified set of potentially glycosylated peptides. Application of the workflow to human haptoglobin and hemopexin, two microheterogeneous N-glycoproteins, identified a total of 57 distinct site-specific glycoforms in the case of haptoglobin and 14 site-specific glycoforms of hemopexin. Using glycan oxonium ions and peptide-characteristic glycopeptide fragment ions and by collapsing topologically redundant glycans, the search software was able to make unique N-glycopeptide assignments for 51% of assigned spectra, with the remaining assignments primarily representing isobaric topological rearrangements. The optimized workflow, coupled with GlycoPeptideSearch, is expected to make high-throughput semiautomated glycopeptide identification feasible for a wide range of users.  相似文献   

19.
AIMS: To design and investigate a recombinant expression system producing a therapeutically important glycoprotein, human erythropoietin (rHuEPO), by Pichia pastoris. METHODS AND RESULTS: EPO cDNA was cloned into pPICZalphaA for expression under control of AOX1 promoter and fused, on the amino-terminal end, with a polyhistidine tag for rapid purification. A target site for factor Xa protease was also introduced, such that cleavage in vitro produced a mature form of rHuEPO having the native N- and C-termini. RHuEPO was characterized as to the extent and nature of N-linked glycosylation using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and western blotting. The rHuEPO produced was approximately 30 kDa. All three N-linked glycosylation sites were occupied dominantly by Man(17)(GlcNAc)(2). N-glycanase-treated rHuEPO purified but not digested with factor-Xa-protease, showed a spectral peak centered about m/z 20400 Da. CONCLUSIONS: The native polypeptide form of human EPO (c. 18 kDa) was obtained for the first time in P. pastoris expression system, after affinity purification, deglycosylation and factor-Xa-protease digestion. The amount of sodium dodecyl sulfate used prior to deglycosylation was found to be crucial in determining the dominant form of glycan in glycoproteins. SIGNIFICANCE AND IMPACT OF THE STUDY: The novel approaches to protein expression and purification system and structural analysis presented, would be important especially for therapeutic proteins expressed in P. pastoris.  相似文献   

20.
A protocol is described for uniform 13C labelling of terminalgalactose residues of the glycan chains of glycoproteins, usingan enzymatic method which does not perturb the protein. Thetechnique is illustrated by application to the biantennary N-linkedglycan chains attached at Asn 297 of immunoglobulin G (IgG).Isotope-edited NMR experiments on this glycoprotein yield datawhich suggest that the galactose residues on the glycan existin two discrete environments, with the galactose in one environmenthaving greater mobility than that in the other. These data arequalitatively consistent with crystallographic data on an Fcfragment, which suggest that one arm of the glycan is in contactwith the protein, while the other projects into the space betweenthe C2 domains. Quantitatively, however, these data cannot berationalized with the crystallographic data, which implies subtledifferences in oligosaccharide structure and dynamics betweenthe solution and crystal states of Fc. dynamics glycoprotein glycans in situ 13C isotopic labelling structure  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号