首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was shown that IS element ISPpy1 isolated earlier in the permafrost strain Psychrobacter maritimus MR29-12 has a high level of functional activity in cells of the heterologous host Escherichia coli K-12. ISPpy1 can be translocated in E. coli cells by itself and mobilize adjacent genes and can also form composite transposons flanked by two copies of this element. Apart from translocations between different plasmids, the composite ISPpy1-containing transposon Tn5080a is capable of translocation from the plasmid into the E. coli chromosome with high frequency and from the chromosome into the plasmid. Among products of Tn5080a transposition into plasmid R388, simple insertions were predominantly formed together with cointegrates. Upon mobilization of adjacent genes with the use of one ISPpy1 copy, only cointegrates arise.  相似文献   

2.
S Harayama  M Rekik 《Gene》1989,78(1):19-27
A simple method to transfer non-conjugative Escherichia coli plasmids to other Gram-negative bacteria and their maintenance is described. This method involves generation of inverse transposition-mediated cointegrates of the non-conjugative E. coli plasmid with a conjugative IncW broad-host-range plasmid, R388, carrying Tn10. Isolation of such cointegrates was readily effected by conjugal transfer from an E. coli donor containing the two plasmids to an E. coli recipient, with selection for transconjugants expressing a marker of the E. coli plasmid. This method is particularly useful when large series of E. coli vector-based clones need to be expressed in other Gram-negative bacteria to be functionally analysed, either by complementation or recombination. Utility of the method is shown by a functional analysis in Pseudomonas putida of pBR322 hybrid plasmids containing catabolic genes of TOL plasmid pWW0.  相似文献   

3.
The properties of IS1/Tn9'-mediated cointegrates between plasmids pDK57 (pBR322:: :: Tn9') and pRP3.1--the deletion derivative of RP1 were investigated. It was found that IS1/Tn9'-mediated integration of pDK57 into the active transcribed regions of pRP3.1 (in particular kan and tet genes) leads to formation of unstable cointegrates capable of resolving in E. coli K-12 rec+ and recA cells. The structure of dissociation products of unstable cointegrates was studied. According to the data received in rec+ cells, the unstable cointegrates mainly produced plasmids pDK57 and pBR322::IS1--Cms-derivative of pDK57 as resolution products. In recA cells the cointegrates dissociate in different ways, and this process leads to the formation of not only pDK57 and pBR322::IS1, but also to the production of the deletion derivatives of these plasmids as well as to the derivatives of pDK57 and pBR322::IS1, containing duplications of IS1 or separate parts of Tn9'. It was concluded that the IS1-specific recombinase is involved in the dissociation (resolution) of unstable IS1/Tn9'-mediated cointegrates. This recombinase recognizes the sites localized in both inverted termini of IS1 as well as in the adjacent DNA segments. Hence, it is possible, that the IS1 recombinase is involved also in the generation of IS1-adjacent delations.  相似文献   

4.
The conjugative plasmid R57 determines resistance to ampicillin and chloramphenicol. Earlier it was shown that R57 encodes site-specific recA-independent recombinase, which acts in cis and resolves IS1-mediated cointegrates arising in the Escherichia coli recA cells between R57 and pBR322. In the present work the properties of the cointegrates between R57 and pBR322 or RP1 arising in the E. coli rec+ strains were studied. It was found that the cointegrates between R57 and pBR322, obtained by mating of the respective biplasmid donors of E. coli rec+ and the rec+ recipients, lost as a result of deletion a large DNA segment of R57 containing determinant Cmr. The resulting hybrid replicons preserved determinants Apr and Tcr of pBR322 and the R57 conjugative properties and were structurally identical. By using plasmid RP1ts12, which is temperature-sensitive in replication, it was demonstrated that in cells rec+ the cointegrates between R57 and RP1 are extremely unstable. On storage they undergo structural degradation mainly affecting the RP1 replicon. The degradation products of the hydrid complex had lost their RP1 genes but preserved the R57 functional determinants. For elucidation of the observed phenomena the properties of the IS1-mediated cointegrates between pBR322:Tn9 and plasmid pBR3.1--deletion derivative of RP1 were studied. It was found that insertion of IS1 sometimes resulted in formation of unstable cointegrates capable of resolving and loosing determinant Cmr with a high frequency. It was suggested that IS1 encodes the site-specific recombinase responsible for resolution of the IS1-mediated cointegrates and deletion generation. Expression of this recombinase appears to be dependent on structure of the insertion sites. The possible role of IS1 and recombinase encoded by it in resolution and structural instability of the cointegrates between R57 and pBR322 or RP1 is discussed.  相似文献   

5.
Transposons Tn501 (specifying mercury resistance) and Tn7 (specifying resistance to trimethoprim and streptomycin) were introduced into extra-slow-growing Rhizobium japonicum by conjugal transfer of the 82 kilobase chimeric plasmid pUW942. Mercury-resistant transconjugants were obtained at a frequency of 10 to 10. The transfer frequency of streptomycin resistance was lower than that of mercury resistance, and Tn7 was relatively unstable. pUW942 was not maintained as an autonomously replicating plasmid in R. japonicum strains. However, some of the Hg transconjugants from the RJ19FY, RJ17W, and RJ12S strains acquired antibiotic markers of the vector plasmid pUW942. Southern hybridization of plasmid and chromosomal DNA of R. japonicum strains with P-labeled pUW942 and pAS8Rep-1, the same plasmid as pUW942 except that it does not contain Tn501, revealed the formation of cointegrates between pUW942 and the chromosome of R. japonicum. More transconjugants with only Tn501 insertions in plasmids or the chromosome were obtained in crosses with strains RJ19FY and RJ17W than with RJ12S. These retained stable Hg both in plant nodules and under nonselective in vitro growth conditions. One of the RJ19FY and two of the RJ12S Hg transconjugants with vector plasmid-chromosome cointegrates conjugally transferred plasmids of 82, 84 or 86, and 90 kilobases, respectively, into plasmidless Escherichia coli C. These plasmids strongly hybridized to pUW942 and EcoRI digests of total DNA of each respective R. japonicum strain but not to indigenous plasmid DNA of the R. japonicum strains. These R' plasmids consisted of pUW942-specific EcoRI fragments and an additional one or two new fragments derived from the R. japonicum chromosome.  相似文献   

6.
In order to elucidate the function of the IS1 insA gene derivatives of plasmid pUC19::Tn9' with insertions of synthetic oligonucleotides were obtained. The latter are equal or multiple of 9 b.p. in length and are located in the Pst1 site within each of the two IS1 copies of the Tn9' transposon. The insertions of the nine base oligonucleotides code for the neutral amino acids and do not shift the reading frame. One of the mutant transposon obtained - Tn9'/X was studied on the ability to form simple insertions and plasmid cointegrates. For this purpose the pUC19 derivatives carrying the wild type and mutant transposon were mobilized by conjugative plasmid pRP3.1. It was found that the damage of the insA gene does not influence the ability of transposon to form simple insertions and plasmid cointegrates in both recA - and rec+ cells of E. coli. However, the frequency of the cointegrate formation in the subsequent transposition of the mutant transposon from pRP3.1::Tn9'/X to pBR322 was by 10-20 times lower in comparison to the wild type transposon. Instable (dissociating) Tn9'/X-mediated plasmid cointegrates formed by interaction pUC19::Tn9'/X and pRP3.1 were obtained. It was shown that in the E. coli recA-cells such cointegrates dissociate, as a rule, "correctly", i.e. they segregate mainly plasmids of types pUC19::Tn9'/X and pUC19::IS1/X. The data obtained correspond with the notion that the gene insA product is not essential for transposition, but is, possibly, involved in the formation of the IS1-generated deletions.  相似文献   

7.
8.
Tn1935, a 23.5-kb transposon mediating resistance to ampicillin, kanamycin, mercury, spectinomycin, and sulfonamide was isolated from pZM3, an IncFIme virulence plasmid from Salmonella wien. Tn1935 possesses the entire sequence of Tn21 and contains two additional DNA segments of 0.95 and 2.7 kb carrying the ampicillin and kanamycin resistance genes, respectively. The latter is part of a composite element since it is flanked by two IS15-like insertion sequences (IS1936) in direct orientation. IS1936 is about 800 bp long and is closely related to IS15 delta, IS26, IS46, IS140, and IS176. Functional analysis of IS1936-mediated cointegrates shows that both insertion sequences are active and able to form cointegrates at the same frequency. Resolution of the cointegrates requires the presence of the host Rec system. The presence of the composite IS1936-element within Tn1935 supports the hypothesis that multidrug resistance transposons evolved by insertion of antibiotic determinants which are themselves transposable.  相似文献   

9.
The mutant pEG1 of R-factor RP4 with temperature-sensitive defect in replication, carrying a transposable ampicillin resistance element Tn1 was used to define the frequency of insertion of this element into Escherichia coli K-12 chromosome and some other plasmids. Our results indicate that the frequency of colony forming by bacteria with pEG1-factor on ampicillin medium in non-permissive conditions corresponds to the frequency of Tn1 insertion into bacterial chromosome or some other plasmid (in case when the strains are carrying a second plasmid). The frequency of Tn1 insertion into the chromosome is about 4.10(-4). The defect in recA gene produce no serious change in the frequency of Tn1 insertion into the bacterial chromosome. The translocation of Tn1 element from pEG1-factor to R483, R6 and ColE1 plasmids occurs at 10 to 100-fold-higher frequency than from the plasmid to the chromosome. The insertion of Tn1 into the F'-factor KLF10 and R-factor R64-11 occurs at far lower frequency than that to plasmids R6, R483, or ColE1.  相似文献   

10.
The construction and purification of recombinant baculovirus vectors for the expression of foreign genes in insect cells by standard transfection and plaque assay methods can take as long as 4 to 6 weeks. This period can be reduced to several days by using a novel baculovirus shuttle vector (bacmid) that can replicate in Escherichia coli as a plasmid and can infect susceptible lepidopteran insect cells. The bacmid is a recombinant virus that contains a mini-F replicon, a kanamycin resistance marker, and attTn7, the target site for the bacterial transposon Tn7. Expression cassettes comprising a baculovirus promoter driving expression of a foreign gene that is flanked by the left and right ends of Tn7 can transpose to the target bacmid in E. coli when Tn7 transposition functions are provided in trans by a helper plasmid. The foreign gene is expressed when the resulting composite bacmid is introduced into insect cells.  相似文献   

11.
The broad-host-range IncP beta plasmid R751 can mobilize itself from Escherichia coli to Bacteroides spp, but it is not maintained in Bacteroides spp. If R751 carries the Bacteroides transposon Tn4351, it can be integrated into the Bacteroides chromosome. Previously we showed that R751, integrated in the chromosome of Bacteroides uniformis, cannot mobilize itself out of B. uniformis into E. coli or isogenic B. uniformis strains. In this report, we showed that if the Bacteroides conjugative tetracycline resistance element Tcr ERL was coresident with the R751 insertion in B. uniformis, derivatives of R751 were transferred to E. coli, where they were recovered as plasmids. The most common derivatives were R751::Tn4351 and R751::IS4351, but some strains transferred R751 derivatives, containing additional DNA segments ranging in size from 10 to 23 kilobases. These DNA inserts cross-hybridized with chromosomal DNA from B. uniformis which did not carry the Tcr ERL element. Therefore, the inserts appeared to be segments of the wild-type B. uniformis chromosome and were not associated with the Tcr ERL element. The transfer of integrated R751 from B. uniformis was independent of the RecA phenotype of the E. coli recipients and did not appear to be due to transfer of B. uniformis chromosomal DNA, followed by RecA-dependent recombination between homologous IS4351 sequences to form the resultant R751 plasmid derivatives. Consistent with this, no transfer of Tn4351 (associated with the cointegrated R751) from B. uniformis donors to isogenic B. uniformis recipients was detected (< 10(-8)). Our data support the hypothesis that R751 excises from the B. uniformis chromosome by recombination involving flanking Tn4351 or IS4351 sequences and forms nonreplicating circles. The mobilization of these circular forms out of B. uniformis to E.coli is then facilitated by the Tcr ERL element.  相似文献   

12.
Transposable-element-mediated fusion of the conjugal plasmid pOX38::Tn9 with pBR322 results in the appearance of cointegrates composed of a single copy of each plasmid, and cointegrates which carry a single copy of pOX38 but multiple tandem copies of pBR322. These plasmids are separated by directly repeated copies of the transposable element. We demonstrate here that such multimers can be generated from monomeric cointegrates, probably by unequal crossing over between the flanking Tn9(IS1) elements. Their appearance is thus not necessarily associated with the original transposition (fusion) event. Our study demonstrates that the process of duplication is strongly dependent on the homologous recombination system of Escherichia coli, since it is undetectable by our methods in recA- strains. It is also strongly dependent on the presence of a functional DNA polymerase I in the cell. The major pathway(s) for this duplication thus appears to rely on both the homologous recombination system and the replication of the duplicated segment.  相似文献   

13.
We have constructed and used an integrative vector, pAT112, that takes advantage of the transposition properties (integration and excision) of transposon Tn1545. This 4.9-kb plasmid is composed of: (i) the replication origin of pACYC184; (ii) the attachment site (att) of Tn1545; (iii) erythromycin-and kanamycin-resistance-encoding genes for selection in Gram- and Gram+ bacteria; and (iv) the transfer origin of IncP plasmid RK2, which allows mobilization of the vector from Escherichia coli to various Gram+ recipients. Integration of pAT112 requires the presence of the transposon-encoded integrase, Int-Tn, in the new host. This vector retains the insertion specificity of the parental element Tn1545 and utilises it to carry out insertional mutagenesis, as evaluated in Enterococcus faecalis. Since pAT112 contains the pACYC184 replicon and lacks most of the restriction sites that are commonly used for molecular cloning, a gene from a Gram+ bacterium disrupted with this vector can be recovered in E. coli by cleavage of genomic DNA, intramolecular ligation and transformation. Regeneration of the gene, by excision of pAT112, can be obtained in an E. coli strain expressing the excisionase and integrase of Tn1545. The functionality of this system was illustrated by characterization of an IS30-like structure in the chromosome of En. faecalis. Derivatives pAT113 and pAT114 contain ten unique cloning sites that allow screening of recombinants having DNA inserts by alpha-complementation in E. coli carrying the delta M15 deletion of lacZ alpha. These vectors are useful to clone and introduce foreign genes into the genomes of Gram+ bacteria.  相似文献   

14.
A study was made of the transposition of the mercury resistance transposon Tn5041 which, together with the closely related toluene degradation transposon Tn4651, forms a separate group in the Tn3 family. Transposition of Tn5041 was host-dependent: the element transposed in its original host Pseudomonas sp. KHP41 but not in P. aeruginosa PAO-R and Escherichia coli K12. Transposition of Tn5041 in these strains proved to be complemented by the transposase gene (tnpA) of Tn4651. The gene region determining the host dependence of Tn5041 transposition was localized with the use of a series of hybrid (Tn5041 x Tn4651) tnpA genes. Its location in the 5'-terminal one-third of the transposase gene is consistent with the data that this region is involved in the formation of the transposition complex in transposons of the Tn3 family. As in other transposons of this family, transposition of Tn5041 occurred via cointegrate formation, suggesting its replicative mechanism. However, neither of the putative resolution proteins encoded by Tn5041 resolved the cointegrates formed during transposition or an artificial cointegrate in E. coli K12. Similar data were obtained with the mercury resistance transposons isolated from environmental Pseudomonas strains and closely related to Tn5041 (Tn5041 subgroup).  相似文献   

15.
Transposon Tn2555 was isolated from a clinical E. coli strain carries the genes for sucrose utilization. Previously it was shown that Tn2555 is very unstable and undergoes structural rearrangements with a high frequency. Several deletion derivatives of Tn2555 and one with an inversion of the internal segment were found. They form the Tn2555 transposon family. This paper describes further structural and functional analysis of Tn2555. In the course of the experiments on pBR325 (Mob-) mobilization by conjugative RP4 derivatives, containing Tn2555 family elements, it was found, that all of them induce cointegrate formation. Some of these cointegrates were able to dissociate in rec+ and recA E. coli cells. Restriction endonuclease analysis of the resulting plasmids have shown, that among them were the end products of the Tn2555 transposition from RP4 to pBR325. Besides, the pBR325 derivatives, containing a discrete DNA segment of approximately 800 b.p., originating from Tn2555, were found. The segment can transpose from pBR325 to RP4 indicating that it is an insertion sequence. This new IS-element was designated IS286. The size and the genetic properties of IS286 resemble those of the IS1 element. However restriction analysis and Southern hybridization data show no significant homology between IS286 and IS1. It was found that the Tn2555 family elements are flanked by directly repeated IS286. One of them (Tn2555.3) contains an additional copy of IS286 in its internal region.  相似文献   

16.
Regulation of capsular biosynthesis (rcs) genes, encoding the ability to induce the production of a colanic acid polysaccharide capsule, were transferred to Escherichia coli by conjugation with Klebsiella pneumoniae (aerogenes) of capsular serotype K36. Transfer was mediated by a 58.4-MDa conjugative plasmid of incompatibility group IncM, which carried a copy of Tn7 (specifying resistance to trimethoprim and streptomycin) together with determinants for several further resistances. This plasmid did not carry the rcs genes itself, but mediated the conjugative recA-dependent transfer of part of the Klebsiella chromosome to E. coli. Once resident in E. coli, the rcs gene(s) could not be mobilised to other strains of E. coli, and the mobilising plasmid could be cured from capsulate transconjugants without loss of the ability to produce colanic acid. All such cured transconjugants contained an insertion of Tn7 in the chromosome, suggesting that the transposon might be involved in mobilisation of the rcs genes from Klebsiella sp. to E. coli. These findings explain previous observations that the ability to manufacture capsular polysaccharide could be transferred by plasmids between Klebsiella sp. and E. coli.  相似文献   

17.
The plasmid pSS120, determining the synthesis of species specific I phase antigen of Shigella sonnei is mobilized for genetic transfer into E. coli K12 recipient cells with the frequency 12-41%. The frequency depends on the type of mobilized plasmid and recipient strain. The I phase antigen is normally expressed in II phase recipient cells and in E. coli cells. During mobilization pSS120 forms cointegrates representing a recombinant of mobilizing and mobilized plasmids DNA. The study of pSS120 inheritance stability has shown the plasmid to be unstable during culturing of bacteria and to be partially lost from the parent Shigella sonnei strains as well as from the "hybrid" transconjugants obtained. The 60 Md plasmid present in the donor strains of Shigella sonnei is prone to structural fragmentation particularly expressed in Shigella sonnei/E. coli hybrids.  相似文献   

18.
Earlier we have studied unstable dissociating IS1/Tn9'-mediated cointegrates between the plasmids pDK57 (pBR322::Tn9') and pRP3.1, a deletion derivative of RP1, and two types of such cointegrates containing three and four copies of IS1 were revealed. In the present paper we studied the structure of stable IS1/Tn9'-mediates cointegrates and simple insertions formed by interaction between the plasmids pDK57 and pRP3.1 in the E. coli recA- cells. It was shown, that the stable cointegrates were formed by insertion of pDK57 in different loci of pRP3.1 and these cointegrates contain three copies of IS1, i.e. one copy of IS1 and a copy of Tn9' at the junction of the two replicons. The cointegrates are formed predominantly due to the activity of the left copy of Tn9', which occupies a proximal position in regard to the promoter of the cat gene. It was found that the integration of pDK57 into the kan gene region of pRP3.1 leading to the formation of the KmS cointegrates occurs only in one of the two possible orientations. Meanwhile the insertions of the transposon Tn9' into the kan region of pRP3.1 leading to simple insertions occurs in the orientation opposite to the orientation of the transposon in the KmS cointegrates. It is proposed that simple insertions are not the products of direct transposition of Tn9', but they are formed from unstable cointegrates under the action of IS1-specific resolvase.  相似文献   

19.
The gene for resistance to erythromycin and clindamycin, which is carried on the conjugative Bacteroides plasmid, pBF4, has been shown previously to be part of an element (Tn4351) that transposes in Escherichia coli. We have now introduced Tn4351 into Bacteroides uniformis 0061 on the following two suicide vectors: (i) the broad-host-range IncP plasmid R751 (R751::Tn4351) and (ii) pSS-2, a chimeric plasmid which contains 33 kilobases of pBF4 (including Tn4351) cloned into the IncQ plasmid RSF1010 and which is mobilized by R751. When E. coli HB101, carrying either R751::Tn4351 or R751 and pSS-2, was mated with B. uniformis under aerobic conditions, Emr transconjugants were detected at a frequency of 10(-6) to 10(-5) (R751::Tn4351) or 10(-8) to 10(-6) (R751 and pSS-2). In matings involving pSS-2, all Emr transconjugants contained simple insertions of Tn4351 in the chromosome, whereas in matings involving R751::Tn4351, about half of the Emr transconjugants had R751 cointegrated with Tn4351 in the chromosome. Of the Emr transconjugants, 13% were auxotrophs. Bacteroides spp. which had R751 cointegrated with Tn4351 in the chromosome did not transfer R751 or Tn4351 to E. coli HB101 or to isogenic B. uniformis, nor did the intergrated R751 mobilize pE5-2, an E. coli-Bacteroides shuttle vector that contains a transfer origin that is recognized by R751.  相似文献   

20.
Abstract Regulation of capsular biosynthesis ( rcs ) genes, encoding the ability to induce the production of a colanic acid polysaccharide capsule, were transferred to Escherichia coli by conjugation with Klebsiella pneumoniae (aerogenes) of capsular serotype K36. Transfer was mediated by a 58.4-MDa conjugative plasmid of incompatibility group IncM, which carried a copy of Tn7 (specifying resistance to trimethoprim and streptomycin) together with determinants for several further resistances. This plasmid did not carry the rcs genes itself, but mediated the conjugative recA -dependent transfer of part of the Klebsiella chromosome to E. coli . Once resident in E. coli , the rcs gene(s) could not be mobilised to other strains of E. coli , and the mobilising plasmid could be cured from capsulate transconjugants without loss of the ability to produce colanic acid. All such cured transconjugants contained an insertion of Tn7 in the chromosome, suggesting that the transposon might be involved in mobilisation of the rcs genes from Klebsiella sp. to E. coli . These findings explain previous observations that the ability to manufacture capsular polysaccharide could be transferred by plasmids between Klebsiella sp. and E. coli .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号