首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth of the primary seminal root of maize (Zea mays L.) is characterized by an initial negative gravitropic reaction and a later positive one that attains a plagiotropic liminal angle. The effects of temperature and water potential of the surrounding soil on these gravitropic reactions were studied. Temperatures of 32, 25, and 18C and soil water potentials of −5,−38, and −67 kPa were imposed and the direction of growth was measured for every 1 cm length of the root. The initial negative gravitropic reaction extended to a distance of about 10cm from the graln. Higher temperatures reduced the initial negative gravitropic reaction. Lower soil water potential induced a downward growth at root emergence. A mathematical model, in which it was assumed that the rate of the directional change of root growth was a sum of a time-dependent negative gravitropic reaction and an establishment of the liminal angle, adequately fitted the distance-angle relations. It was suggested that higher temperatures and/or a lower water potential accelerated the diminution of the intitial negative gravitropic reaction.  相似文献   

2.
Summary Energy-driven protein secretion from Petunia hybrida pollen in 10% sucrose solution shaking culture does not change markedly with temperature, except over a narrow (6° C) temperature range with a midpoint at 17° C. Over this narrow temperature range, there is a very rapid increase from a low secretion plateau at low temperatures to a plateau of higher secretion at higher temperatures. Addition of calcium ions decreases the overall amount secreted, but does not change the critical temperature where the rapid rise in secretion is observed. Boric acid, when added to the culture, also decreases the overall amount released, but in a different way to calcium. While there is a sharp discontinuity at 17° C as before, the increase in protein release at this temperature is smaller than before. In addition, after a plateau at temperatures higher than 20° C, there is a second sharp increase in secreted protein over another narrow temperature range with a midpoint of 28° C, followed by another plateau at higher temperatures. The effects of calcium and boric acid are additive. The sharp discontinuities in protein release are interpreted in terms of lipid thermotropism in membranes and a boron involvement in the movement of proteins into the extending pollen tube membranes from secretory vesicles.  相似文献   

3.
One-year-old tree seedlings were incubated in a greenhouse from April to July, under natural daylight conditions, with their root systems at constant temperatures of 5, 10, 15, 20, 25, 30 and 35 °C and with the above ground parts kept at a constant air temperature of 18–20 °C. The course of height growth, total mass increment, root, shoot and leaf weight as well as leaf areas were measured. The results indicate that clear differences exist in the optimal root zone temperatures for various growth parameters in different tree species. Pinus sylvestris had a maximal height increment at about 5–10 °C and maximal total mass increment at 15 °C root temperature. In contrast, the optimum for Quercus robur was at 25 °C. Tilia cordata and Fagus sylvatica had their optima for most growth parameters at 20 °C. The root temperature apparently indirectly influenced photosynthesis (dry weight accumulation) and respiration loss. From the observed symptoms and indications in the literature it seems probable that a change in hormone levels is involved as the main factor in the described effects. Variation of root temperature had only an insignificant effect on bud burst and the time at which the shoots sprouted. Apparently species of northern origin seem to have lower root temperature optima than those of more southern origin. This is to be verified by investigation of other tree species.  相似文献   

4.
Summary Pollen selection experiments were conducted in tomato to determine the effects of low temperature conditions during pollination on the rate of root elongation of the progeny. Pollen was harvested from an F1 interspecific hybrid between a high altitude Lycopersicon hirsutum accession and the cultivated tomato L. esculentum. The pollen was applied to stigmas of malesterile L. esculentum plants maintained in growth chambers set at either 12°C/7°C or 24°C/18°C. BC1 seeds from the low and normal temperature crosses were germinated and root elongation rate was measured at either 9°C or 24°C. At 9°C, the rate of root elongation for progeny of the low temperature crosses was higher than for progeny of crosses at normal temperatures; at 24°C the rate of root elongation was similar for the two crossing treatments. To compare the temperature responses of the two backcross populations we also calculated the relative inhibitory effect of low temperature on the rate of root elongation: the ratio between the rate of root elongation at 9°C to that at 24°C. Root elongation of seedlings from the low temperature crosses was less inhibited by the cold than root elongation for progeny of the normal temperature crosses. These results suggest a relationship between pollen selection at low temperatures and the expression of a sporophytic trait under the same environmental stress.  相似文献   

5.
Guar (Cyamopsis tetregonoloba (L.) may be grown when soil temperatures are potentially high enough at the time of planting to inhibit nodulation and N2 fixation. An experiment was conducted using controlled conditions to determine the influence of high root temperature on growth and N2 fixation of guar. The experiment included two strains of rhizobia, two varieties of guar, two mineral N treatments, and root temperatures of 34, 37, and 40°C. Plants were grown for 44 days. The root temperature of 40°C reduced N fixation by at least 80% and nodule weight by more than 50%. Significant interactions occurred between most factors in influencing nodulation, N2 fixation and dry matter production. Guar, nodulated by rhizobial strain GAR022-1 and fully dependent on N2 fixation or provided with starter mineral N (25 mg pot–1), was not influenced by the root temperature of 37°C as compared to 34°C. Nodulation and N2 fixation by strain 32H1 was reduced by at least 40% when no starter mineral N was provided and the root temperature was 37°C. Providing starter mineral N to one variety of guar doubled the quantity of N2 fixed by strain 32H1 at both 34 and 37°C but N2 fixation was lower at the higher root temperature. It appears that root temperatures between 37° and 40°C bracketed the critical root temperature for N2 fixation by nodulated guar and that the critical root temperature for guar dependent on mineral N was above 40°C.  相似文献   

6.
Small insects regulate their body temperature solely through behavior. Thus, sensing environmental temperature and implementing an appropriate behavioral strategy can be critical for survival. The fly Drosophila melanogaster prefers 24°C, avoiding higher and lower temperatures when tested on a temperature gradient. Furthermore, temperatures above 24°C have negative reinforcing properties. In contrast, we found that flies have a preference in operant learning experiments for a low-temperature-associated position rather than the 24°C alternative in the heat-box. Two additional differences between high- and low-temperature reinforcement, i.e., temperatures above and below 24°C, were found. Temperatures equally above and below 24°C did not reinforce equally and only high temperatures supported increased memory performance with reversal conditioning. Finally, low- and high-temperature reinforced memories are similarly sensitive to two genetic mutations. Together these results indicate the qualitative meaning of temperatures below 24°C depends on the dynamics of the temperatures encountered and that the reinforcing effects of these temperatures depend on at least some common genetic components. Conceptualizing these results using the Wolf–Heisenberg model of operant conditioning, we propose the maximum difference in experienced temperatures determines the magnitude of the reinforcement input to a conditioning circuit.  相似文献   

7.
Summary The effect of clustering behaviour on metabolism, body temperature, thermal conductance and evaporative water loss was investigated in speckled mousebirds at temperatures between 5 and 36°C. Within the thermal neutral zone (approximately 30–35 °C) basal metabolic rate of clusters of two birds (32.5 J·g-1·h-1) and four birds (28.5 J·g-1·h-1) was significantly lower by about 11% and 22%, respectively, than that of individuals (36.4 J·g-1·h-1). Similarly, below the lower critical temperature, the metabolism of clusters of two and four birds was about 14% and 31% lower, respectively, than for individual birds as a result of significantly lower total thermal conductance in clustered birds. Body temperature ranged from about 36 to 41°C and was positively correlated with ambient temperature in both individuals and clusters, but was less variable in clusters. Total evaporative water loss was similar in individuals and clusters and averaged 5–6% of body weight per day below 30°C in individuals and below 25°C in clusters. Above these temperatures total evaporative water loss increased and mousebirds could dissipate between 80 and 90% of their metabolic heat production at ambient temperatures between 36 and 39°C. Mousebirds not only clustered to sleep between sunset and sunrise but were also observed to cluster during the day, even at high ambient temperature. Whereas clustering at night and during cold, wet weather serves a thermoregulatory function, in that it allows the brrds to maintain body temperature at a reduced metabolic cost, clustering during the day is probably related to maintenance of social bonds within the flock.Abbreviations BMR basal metabolic rate - bw body weight - C totab total thermal conductance - EWI evaporative water loss - M metabolism - RH relative humidity - T a ambient temperature - T b body temperature - T ch chamber temperature - T cl cluster temperature - TEWL total evaporative water loss - LCT lower critical temperature - TNZ thermal neutral zone  相似文献   

8.
Thirty New England dog whelks (Mollusca: Gastropoda: Nassariidae), Nassarius trivittatus, were tested as a group for 3 days in a long linear gradient trough encompassing a thermal gradient ranging from 5°C to 45°C. The modal thermal preferendum of the snails lay between 30°C and 35°C. The lowest temperature interval voluntarily occupied by the snails was 15–20°C, the highest 35–40°C. W e believe this to be the first published study of temperature preference and avoidance behavior of gastropod molluscs.  相似文献   

9.
Kutschera U  Siebert C  Masuda Y  Sievers A 《Planta》1991,183(1):112-119
Caryopses of rice (Oryza sativa L. cv. Sasanishiki) were germinated in air or under water. In submerged seedlings a twofold increase in coleoptile growth rate and an inhibition of root growth was observed. The amount of starch in the amyloplasts of submerged coleoptiles was substantially reduced compared to the air-grown control plants and plastids had a proplastidic character. During the rapid elongation of coleoptiles under water, the osmotic concentration of the press sap remained constant, whereas in air-grown coleoptiles a decrease was measured. Determination of curvature of gravistimulated air-grown and submerged shoots was carried out by placing the coleoptiles horizontally in air of 98% relative humidity. Air-grown coleoptiles reached a vertical orientation within 5 h after onset of gravistimulation. In coleoptiles germinated under water the first signs of consistent negative gravitropic bending occurred after 4–5 h and curvature was complete after 24 h. During the first 5 h of gravistimulation the water-grown coleoptiles grew at an average rate of 0.39 mm·h–1, whereas in air-grown coleoptiles a rate of 0.27 mm·h–1 was measured. Concomitant with the delayed onset of gravitropic bending of the water-grown coleoptiles, a change in plastid ultrastructure and an increase in starch content was observed. We conclude that the gravitropic responsiveness of the rice coleoptile depends on the presence of starch-filled amyloplasts.We wish to thank H.-J. Ensikat for technical assistance with the scanning electron microscopy. Supported by the Bundesminister für Forschung und Technologie and the Deutsche Forschungsgemeinschaft.  相似文献   

10.
It has recently been documented that, compared to untransformed controls, the roots of oilseed rape (Brassica napus L. CV CrGC5) seedlings transformed by Agrobacterium rhizogenes A4 show a reduced gravitropic reaction (Legué et al. 1994, Physiol Plant 91: 559–566). After stimulation at 90°C or 135°, the transformed root tips curve, but never reach a vertical orientation. In the present study, we investigated the causes of reduced gravitropic bending observed in stimulated transformed root tips. First, we localized the gravitropic curvature in normal and in transformed roots after 1.5 h of stimulation. The cells involved in root curvature (target cells) corresponded at the cellular level to the apical part of the zone of increasing cell length. In transformed roots grown in the vertical position, these cells showed a reduction in cell length compared to controls. Because auxin is considered to be the gravitropic mediator, the response of normal and transformed roots to exogenous auxin was studied. Indole-3-acetic acid (IAA) was applied along the first 3 mm using resin beads loaded with the hormone. In comparison to normal roots, transformed roots showed reduced bending toward the bead at all points of bead application. Moreover, the cells which responded to IAA corresponded to the target cells involved in the gravitropic reaction. The level of endogenous IAA was lower in transformed roots. Thus, it was concluded that the modified behavior of transformed roots during gravitropic stimulation could be due to differences either in IAA levels or in reactivity of the target cells to the message from the cap.Abbreviations DEZ distal elongation zone - ELISA enzymelinked immunosorbent assay - T-DNA DNA transferred from Agrobacterium rhizogenes to the plant genome This work was supported by the Centre National d'Etudes Spatiales.  相似文献   

11.
Summary 1) When a thermal gradient (20–40° C) was established along a laboratory nest, Camponotus mus nurse workers showed a photoperiodic circadian rhythm of temperature preferences for brood rearing. Two different temperatures were daily selected to translocate the brood, i.e. 30.8° C selected at the middle of the photophase, and 27.5° C selected during the scotophase, 8 h later. 2) The daily temperature response of nurse workers consisted of paired high and low-temperature translocations, with a 8 hs-interval in between: high-temperature translocation was shown to be entrained by the photophase length, whereas low-temperature translocation was shown to be dependent on the precedent one. 3) Prey deprivation to the colony modified the brood transport behaviors resulting in translocations of only cocoons and large (ripe) larvae, stages in which the pupation processes are triggered. Small larvae and eggs remained located at 27.5° C. 4) Evaluation of pupa developmental time as well as percentage of pupa mortality at different temperature regimes allowed to construct an efficiency index relating pupa survival and cocoon developmental time. In the range of temperatures selected by nurses, the index reached its maximal values. 5) The ecological significance of these results is discussed.  相似文献   

12.
The fish species Cyprinidon artifrons, Floridichthys carpio, and Gambusia yucatana inhabit shallow mangrove ponds off the coast of Belize. Portions of these ponds experience a diurnal temperature change from 26 °C at night to 40 °C and above during midday. Repeated field observations indicate Cyprinidon prefer the warmer (and much larger) portions of the ponds whereas the other two species stay in the cooler areas.The hypothesis that temperature is serving as a cue for partitioning within the ponds was supported by laboratory thermal gradient tests in which Cyprinidon preferred temperatures clearly higher than the other two species.The critical thermal maximum (CTM) was determined for the three species using members that had been acclimated to either a daily cycling temperature similar to that for the ponds, or to the mean of the 24-hour cycle (30 °C). Cyprinidon acclimated to the cycling temperature had a CTM of 45.5 °C, which apparently sets a new record for fish CTM. Acclimation to a constant 30 °C lowered the CTM to 43.7 °C. Floridichthys and Gambusia acclimated to the cycled temperature had CTMs of 43.9 and 43.3 °C respectively, and 42.5 and 42.6 °C for those acclimated to 30 °C.All three species appear to have the ability to tolerate the high temperatures throughout the ponds but only Cyprinidon utilize the whole pond during the day. This may help to explain the large populations of Cyprinodon found in these mangrove ponds compared to the other species.  相似文献   

13.
Effects of temperature on the activity of flucycloxuron on larval stages of Panonychus ulmi (Koch), based on LC50 values, were highly significant (P < 0.001) with temperature coefficients of-1.7 in both the ranges of 15° to 25°C and 20° to 30°C. The slopes of probit regression lines at 15° and 20°C were significantly steeper than those at 25° and 30°C. As a consequence the temperature coefficients based on LC90 values were-4.4 and-2.2, for the 2 temperature ranges. The ovicidal activity of flucycloxuron on P. ulmi was low and was only statistically detectable at 20°C (LC90 of 84 mg a.i./l). In studies with larvae of Aedes aegypti (Linnaeus), Leptinotarsa decemlineata (Say), Plutella xylostella (Linnaeus), Spodeptera exigua (Hübner) and Spodoptera littoralis (Boisduval) probit regression lines were parallel over temperature. The activity of flucycloxuron on these five insect species was not affected by temperature. Based on LC50 values, diflubenzuron showed positive temperature coefficients on P. xylostella of + 2.1 at 15° to 25°C and + 2.5 at 20° to 30°C. For S. littoralis the temperature coefficient was positive (+ 2.4) at 15° to 25°C but negative (-1.9) at the 20° to 30°C range. Temperature coefficients of diflubenzuron were neutral for A. aegypti, L. decemlineata and S. exigua. In the design and analysis of these studies special allowance was made for date effects and variation in natural mortality over temperature.  相似文献   

14.
The effects of root-zone salinity (0, 30, and 60 mmol L–1 of NaCl) and root-zone temperature (10, 15, 20, and 25°C) and their interactions on the number of tillers, total dry matter production, and the concentration of nutrients in the roots and tops of barley (Hordeum vulgare L.) were studied. Experiments were conducted in growth chambers (day/night photoperiod of 16/8 h and constant air temperature of 20°C) and under water-culture conditions. Salinity and root temperature affected all the parameters tested. Interactions between salinity and temperature were significant (p<0.05) for the number of tillers, growth of tops and roots, and the concentration of Na, K, P in the tops and the concentration of P in the roots. Maximum number of tillers and the highest dry matter were produced when the root temperature was at the intermediate levels of 15 to 20°C. Effect of salinity on most parameters tested strongly depended on the prevailing root temperature. For example, at root temperature of 10°C addition of 30 mmol L–1 NaCl to the nutrient solution stimulated the growth of barley roots; at root temperature of 25°C, however, the same NaCl concentration inhibited the root growth. At 60 mmol L–1, root and shoot growth were maximum when root temperature was kept at the intermediate level of 15°C; most inhibition of salinity occurred at both low (10°C) and high (25°C) root temperatures. As the root temperature was raised from 10 to 25°C, the concentration of Na generally decreased in the tops and increased in the roots. At a given Na concentration in the tops or in the roots, respective growth of tops or roots was much less inhibited if the roots were grown at 15–20°C. It is concluded that the tolerance of barley plant to NaCl salinity of the rooting media appears to be altered by the root temperature and is highest if the root temperature is kept at 15 to 20°C.  相似文献   

15.
Physiological variables of torpor are strongly temperature dependent in placental hibernators. This study investigated how changes in air temperature affect the duration of torpor bouts, metabolic rate, body temperature and weight loss of the marsupial hibernator Burramys parvus (50 g) in comparison to a control group held at a constant air temperature of 2°C. The duration of torpor bouts was longest (14.0±1.0 days) and metabolic rate was lowest (0.033±0.001 ml O2·g-1·h-1) at2°C. At higher air temperatures torpor bouts were significantly shorter and the metabolic rate was higher. When air temperature was reduced to 0°C, torpor bouts also shortened to 6.4±2.9 days, metabolic rate increased to about eight-fold the values at 2°C, and body temperature was maintained at the regulated minimum of 2.1±0.2°C. Because air temperature had such a strong effect on hibernation, and in particular energy expenditure, a change in climate would most likely increase winter mortality of this endangered species.Abbreviationst STP standard temperature and pressure - T a air temperature - T b body temperature - VO2 rate of oxygen consumption  相似文献   

16.
D. C. Jordan 《Plant and Soil》1981,61(1-2):93-111
Medicago laciniata, an annual leguminous plant of Saharo-Sindian origin, is particularly refractory to root nodulation by most strains ofRhizobium meliloti. Using a series of such bacterial strains belonging to the 8 groups of Brockwell and Hely, and a variety of environmental conditions, it was noted that several normally non-nodulating strains (at 20°C) produced ineffective nodules at root temperatures of 24°C to 28°C. Nodulation at 20°C failed to occur in the presence of a wide variety of test compounds and physical conditions. No phytoalexins or anti-Rhizobium growth inhibitors were isolated from inoculated root tissue at any temperature. Temperature shift experiments indicated no infection of the root hairs at 20°C, and infection threads produced at the permissive root temperature failed to elongate after transfer to 20°C. However, if meristematic activity had been initiated in the inner root-cortical cells as a result of infection thread penetration at 28°C, no blockage of nodule maturation occurred upon subsequent transfer to 20°C root temperature. Nodules produced at 28°C were completely devoid of nitrogenase activity, although the apical (but not the distal) regions contained normal-appearing bacteriods, surrounded by enclosing membranes, and possessed a fully functional leghaemoglobin. A shortage of metabolic energy did not appear to be involved in the ineffective response. A hypothesis to explain the nodulation phenomenon observed was based on the observation in the roots of 2 factors present at 20°C but not at 28°C.  相似文献   

17.
Effects of temperature on vegetative growth on a semi-synthetic medium of 22 isolates of Metarhizium anisopliae and 14 isolates of M. flavoviride were determined. The majority of isolates of both species grew between 11 and 32°C; several isolates grew at 8 and 37 °C. None of the isolates grew at 40 °C. Relative growth rate, calculated from the maximum growth rate for each isolate, was significantly affected by temperature and isolate, with significant isolate * temperature interactions. The maximum absolute growth rates among the isolates ranged from 2.5 mm to 5.9 mm/day. Optimal temperatures were generally between 25 and 32 °C with several isolates exhibiting optimal growth at temperatures as high as 32 °C. Overall, relative growth rates were greater in isolates of M. anisopliae than M. flavoviride at temperatures of 25 °C or lower; conversely mean relative growth rates were greater in M. flavoviride than M. anisopliae at temperatures higher than 25 °C. However, the two most cold tolerant isolates at 8 °C were M. flavoviride and the three most heat tolerant at 35 °C were M. anisopliae. Since temperature growth responses varied considerably between isolates, strain selection according to thermal tolerance may be warranted when choosing a strain for development as a microbial control agent.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

18.
Body temperature, oxygen consumption, respiratory and cardiac activity and body mass loss were measured in six females and four males of the subterranean Zambian mole rat Cryptomys sp. (karyotype 2 n=68), at ambient temperatures between 10 and 35°C. Mean body temperature ranged between 36.1 and 33.2°C at ambient temperatures of 32.5–10°C and was lower in females (32.7°C) than in males (33.9°C) at ambient temperatures of 10°C but dit not differ at thermoneutrality (32.5°C). Except for body temperature, mean values of all other parameters were lowest at thermoneutrality. Mean basal oxygen consumption of 0.76 ml O2·g-1· h-1 was significantly lower than expected according to allometric equations and was different in the two sexes (females: 0.82 ml O2·g-1·h-1, males: 0.68 ml O2·g1·h-1) but was not correlated with body mass within the sexes. Basal respiratory rate of 74·min-1 (females: 66·min1, males: 87·min-1) and basal heart rate of 200·min-1 (females: 190·min-1, males: 216·min-1) were almost 30% lower than predicted, and the calculated thermal conductance of 0.144 ml O2·g-1·h1·°C-1 (females; 0.153 ml O2·g-1·h-1·°C-1, males: 0.131 ml O2·g-1·h-1·°C-1) was significantly higher than expected. The body mass loss in resting mole rats of 8.6–14.1%·day-1 was high and in percentages higher in females than in males. Oxygen consumption and body mass loss as well as respiratory and cardiac activity increased at higher and lower than thermoneutral temperatures. The regulatory increase in O2 demand below thermoneutrality was mainly saturated by increasing tidal volume but at ambient temperatures <15°C, the additional oxygen consumption was regulated by increasing frequency with slightly decreasing tidal volume. Likewise, the additional blood transport capacity was mainly effected by an increasing stroke volume while there was only a slight increase of heart frequency. In an additional field study, temperatures and humidity in different burrow systems have been determined and compared to environmental conditions above ground. Constant temperatures in the nest area 70 cm below ground between 26 and 28°C facilitate low resting metabolic rates, and high relative humidity minimizes evaporative water loss but both cause thermoregulatory problems such as overheating while digging. In 13–16 cm deep foraging tunnels, temperature fluctuations were higher following the above ground fluctuations with a time lag. Dominant breeding females had remarkably low body temperatures of 31.5–32.3°C at ambient temperatures of 20°C and appeared to be torpid. This reversible hypothermy and particular social structure involving division of labour are discussed as a strategy reducing energy expenditure in these eusocial subterranean animals with high foraging costs.Abbreviations BMR basal metabolic rate - br breath - C thermal conductance - HR neart rate - LD light/dark - M b body mass - MR metabolic rate - OP oxygen pulse - PCO2 partial pressure of carbon dioxide - PO2 partial pressure of oxygen - RMR resting metabolic rate - RR respiratory rate - T a ambient temperature - T b body temperature - TNZ thermal neural zone - O2 oxygen consumption  相似文献   

19.
The thermal behavior of round and wagtail dancing honeybees (Apis mellifera carnica) gathering sucrose solutions of concentrations between 0.5 and 2 mol·l-1 was investigated under field conditions by infrared thermography (30–506 m flight distance). During the stay inside the hive thoracic surface temperature ranged from 31.4 to 43.9 °C. In both round and wagtail dancing honeybees the concentration of sucrose in the food influenced dancing temperature in a non-linear way. Average dancing temperature was 37.9 °C in foragers gathering a 0.5 mol·l-1 sucrose solution, 40.1°C with a 1 mol·l-1, 40.6°C with a 1.5 mol·l-1 and 40.7°C with a 2 mol·l-1 solution. The variability of thoracic temperature was highest with the 0.5 mol·l-1 and lowest with the 1.5 and 2 mol·l-1 concentrations. Thoracic temperatures during trophallactic contact with hive bees were similar to dancing temperature at 1.5 mol·l-1 but lower at the other concentrations. During periods of distribution of food to hive bees (trophallactic contact >2.5s) the dancers' thorax cooled down by more than 0.5°C considerably more frequently with the 0.5 mol·l-1 solution (65% of cases) than with the 1.5 mol·l-1 solution (26%). By contrast, heating the thorax up by more than 0.5°C was infrequent with the 0.5 mol·l-1 solution (2%) but occurred at a maximum rate of 26% with the 1.5 mol·l-1 solution. Bees gathering the 1 or 2 mol·l-1 solutions showed intermediate behavior. Linear model analysis showed that at higher concentrations the dancers compensated better for variations of hive air temperature: per 1 °C increase of hive temperature dancing temperature increased by 0.34, 0.22, 0.12, and 0.13 °C with 0.5, 1, 1.5, and 2 mol·l-1 sucrose solutions, respectively. The results furnish evidence that dancing honeybees follow a strategy of selective heterothermy by tuning their thermal behavior to the needs of the behavior performed at the moment. Thoracic temperature is regulated to a high level and more accurately when fast exploitation of profitable food sources is recommended. Thoracic temperature is lowered when the ratio of gain to costs of foraging becomes more unfavorable.Abbreviations SD standard deviation - SD reg SD around regression line - H rel relative humidity at feeding station - T a air temperature at feeding station - T i air temperature near the dancers - T d Thoracic surface temperatures - T d dancing - T tr trophallactic contact (distribution of food) - T w walking - T stay mean temperature of total stay in the hive  相似文献   

20.
The effects of temperature and larval density on survival of larvae, growth rate, age at pupation, and adult size (measured as wing length and dry weight) of laboratory-reared Anopheles gambiae (Diptera: Culicidae) were studied. Larvae were reared at three temperatures (24, 27 and 30°C) and three densities (0.5, 1 and 2 larvae/cm2). The effects of density and temperature strongly interacted to determine the mosquitoes' life-history parameters. Survival was highest at the intermediate temperature of 27°C. The differences between the temperatures increased with increasing density. At 30°C survival decreased as density increased, but at 27°C increasing density led to higher survival. Age at pupation increased as temperature decreased from 30°C to 24°C and as density decreased from 2 to 0.5 larvae/cm2. Adult size also increased as temperature decreased, but showed a negative correlation with density only at 27°C. In contrast, at 24°C and 30°C a decrease in density led to a decrease in adult size. Growth rate showed a similar pattern. At 27°C growth rate decreased as density increased, but at other temperatures the opposite trend was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号