首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical forces have direct effects on the growth and differentiation of vascular smooth muscle. The goal of this study was to examine the effects of cyclic mechanical strain on expression of smooth muscle-alpha-actin (SM-alpha-actin), a marker for the differentiated state of vascular smooth muscle, in cultured rat aortic smooth muscle cells (VSMC). Cells grown on dishes coated with either laminin or pronectin were subjected to mechanical strain and effects on expression of SM-alpha-actin were evaluated using the Flexercell Strain Unit. Application of mechanical strain to cells in full media increased SM-alpha-actin protein expression and promoter activity. This was not associated with any effect on growth. Mechanical strain increased activity of all three members of the MAP kinase family (ERKs, JNKs, and p38 MAP kinase), with similar kinetics. Inhibition of either JNKs or p38 MAP kinase blocked the strain-induced increase in SM-alpha-actin promoter activity, and expression of constitutively active forms of JNK or MKK6, a p38 kinase, increased promoter activity. These studies indicate that in adult VSMC, mechanical strain leads to increased expression of smooth muscle markers, resulting in a more contractile phenotype.  相似文献   

2.
Vascular smooth muscle (SM) cells (VSMC) undergo phenotypic modulation in vivo and in vitro. This process involves coordinated changes in expression of multiple SM-specific genes. In cultured VSMC, arginine vasopressin (AVP) increases and PDGF decreases expression of SM alpha-actin (SMA), the earliest marker of SM cells (SMC). However, it is unknown whether these agents regulate other SM genes in a similar fashion. SM22 alpha appears secondary to SMA during development and is also a marker for SMC. This study examined the regulation of SM22 alpha expression by AVP and PDGF in cultured VSMC. Levels of SM22 alpha mRNA and protein were increased by AVP and suppressed by PDGF. Consistent with these changes, AVP increased SM22 alpha promoter activity, whereas PDGF inhibited basal promoter activity and blocked AVP-induced increase. Activation of both JNK and p38 MAPK pathways was necessary for AVP-mediated induction of SM22 alpha promoter. Expression of constitutively active Ras produced similar suppressions on SM22 alpha promoter activity as PDGF. Signaling relayed from PDGF/Ras activation involved Raf, or a protein that competes for this site, Ral-GDS, and phosphatidylinositol 3-kinase activation. Truncational analysis showed that the proximal location of three CArG boxes in the promoter was sufficient for AVP stimulation. Mutations in this CArG box reduced basal and AVP-stimulated promoter activity without effecting PDGF suppression. Overexpression of serum response factor enhanced basal and AVP-stimulated promoter activity but had no effect on PDGF-BB-induced suppression. These data indicate that AVP and PDGF initiate specific signaling pathways that control expression of multiple SM genes leading to phenotypic modulation.  相似文献   

3.
4.
5.
The 130-kDa smooth muscle myosin light chain kinase (smMLCK) is a Ca2+/CaM-regulated enzyme that plays a pivotal role in the initiation of smooth muscle contraction and regulation of cellular migration and division. Despite the critical importance of smMLCK in these processes, little is known about the mechanisms regulating its expression. In this study, we have identified the proximal promoter of smMLCK within an intron of the mouse mylk gene. The mylk gene encodes at least two isoforms of MLCK (130 and 220 kDa) and telokin. Luciferase reporter gene assays demonstrated that a 282-bp fragment (-167 to +115) of the smMLCK promoter was sufficient for maximum activity in A10 smooth muscle cells and 10T1/2 fibroblasts. Deletion of the 16 bp between -167 and -151, which included a CArG box, resulted in a nearly complete loss of promoter activity. Gel mobility shift assays and chromatin immunoprecipitation assays demonstrated that serum response factor (SRF) binds to this CArG box both in vitro and in vivo. SRF knockdown by short hairpin RNA decreased endogenous smMLCK expression in A10 cells. Although the SRF coactivator myocardin induced smMLCK expression in 10T1/2 cells, myocardin activated the promoter only two- to fourfold in reporter gene assays. Addition of either intron 1 or 6 kb of the 5' upstream sequence did not lead to any further activation of the promoter by myocardin. The proximal smMLCK promoter also contains a consensus GATA-binding site that bound GATA-6. GATA-6 binding to this site decreased endogenous smMLCK expression, inhibited promoter activity in smooth muscle cells, and blocked the ability of myocardin to induce smMLCK expression. Altogether, these data suggest that SRF and SRF-associated factors play a key role in regulating the expression of smMLCK.  相似文献   

6.
7.
8.
9.
The desmin gene encodes an intermediate filament protein that is present in skeletal, cardiac, and smooth muscle cells. This study shows that the 4-kb upstream region of the murine desmin promoter directs expression of a lacZ reporter gene throughout the heart from E7.5 and in skeletal muscle and vascular smooth muscle cells from E9. 5. The distal fragment (-4005/-2495) is active in arterial smooth muscle cells but not in venous smooth muscle cells or in the heart in vivo. It contains a CArG/octamer overlapping element (designated CArG4) that can bind the serum response factor (SRF) and an Oct-like factor. The desmin distal fragment can replace a SM22alpha regulatory region (-445/-126) that contains two CArG boxes, to cis-activate a minimal (-125/+65) SM22alpha promoter fragment in arterial smooth muscle cells of transgenic embryos. lacZ expression was abolished when mutations were introduced into the desmin CArG4 element that abolished the binding of SRF and/or Oct-like factor. These data suggest that a new type of combined CArG/octamer element plays a prominent role in the regulation of the desmin gene in arterial smooth muscle cells, and SRF and Oct-like factor could cooperate to drive specific expression in these cells.  相似文献   

10.
11.
Expression of alpha-actin in smooth muscle cells (SMCs) is regulated, in part, by an intronic serum response factor (SRF)-binding CArG element. We have identified a conserved nuclear factor of activated T cells (NFAT) binding site that overlaps this CArG box and tested the hypothesis that this site plays a previously unrecognized role in regulating alpha-actin expression. A reporter construct prepared using a 56-bp region of the mouse alpha-actin first intron containing SRF, NFAT, and AP-1 sites (SNAP) acted as an enhancer element in the context of a minimal thymidine kinase promoter. Basal reporter activity following expression in SMCs was robust and sensitive to the calcineurin-NFAT pathway inhibitors cyclosporin A and FK506. Mutating either the NFAT or SRF binding site essentially abolished reporter activity, suggesting that both NFAT and SRF binding are required. Basal activity in non-smooth muscle HEK293 cells was SRF-dependent but NFAT-independent and approximately 8-fold lower than that in SMCs. Activation of NFAT in HEK293 cells induced an approximately 4-fold increase in activity that was dependent on the integrity of both NFAT and SRF binding sites. NFATc3.SRF complex formation, demonstrated by co-immunoprecipitation, was facilitated by the presence of SNAP oligonucleotide. Inhibition of the calcineurin-NFAT pathway decreased alpha-actin expression in cultured SMCs, suggesting that the molecular interaction of NFAT and SRF at SNAP may be physiologically relevant. These data provide the first evidence that NFAT and SRF may interact to cooperatively regulate SMC-specific gene expression and support a role for NFAT in the phenotypic maintenance of smooth muscle.  相似文献   

12.
13.
The mouse myosin light-chain 1A (MLC1A) gene, expressed in the atria of the adult heart, is one of the first muscle genes to be activated when skeletal as well as cardiac muscles form in the embryo. It is also transcribed in skeletal muscle cell lines at the onset of differentiation. Transient transfection assays of mouse skeletal muscle cell lines with DNA constructs containing MLC1A promoter fragments fused to the chloramphenicol acetyltransferase (CAT) gene show that the first 630 bp of the promoter is sufficient to direct expression of the reporter gene during myotube formation. Two E boxes located at bp -76 and -519 are necessary for this regulation. MyoD and myogenin proteins bind to them as heterodimers with E12 protein and, moreover, transactivate them in cotransfection experiments with the MLC1A promoter in nonmuscle cells. Interestingly, the effect of mutating each E box is less striking in primary cultures than in the C2 or Sol8 muscle cell line. A DNA fragment from bp -36 to -597 confers tissue- and stage-specific activity to the herpes simplex virus thymidine kinase promoter in both orientations, showing that the skeletal muscle-specific regulation of the MLC1A gene is under the control of a muscle-specific enhancer which extends into the proximal promoter region. At bp -89 is a diverged CArG box, CC(A/T)6AG, which binds the serum response factor (SRF) in myotube nuclear extracts, as does the wild-type sequence, CC(A/T)6GG. Both types of CArG box also bind a novel myotube-enriched complex which has contact points with the AT-rich part of the CArG box and adjacent 3' nucleotides. Mutations within the CArG box distinguish between the binding of this complex and binding of SRF; only SRF binding is directly involved in the specific regulation of the MLC1A gene in skeletal muscle cell lines.  相似文献   

14.
Platelet-derived growth factor (PDGF) inhibits expression of smooth muscle (SM) genes in vascular smooth muscle cells and blocks induction by arginine vasopressin (AVP). We have previously demonstrated that suppression of SM-alpha-actin by PDGF-BB is mediated in part through a Ras-dependent pathway. This study examined the role of phosphatidylinositol 3-kinase (PI3K)y and its downstream effector, Akt, in regulating SM gene expression. PDGF caused a rapid sustained activation of Akt, whereas AVP caused only a small transient increase. PDGF selectively caused a sustained stimulation of p85/p110 alpha PI3K. In contrast, p85/110 beta PI3K activity was not altered by either PDGF or AVP, whereas both agents caused a delayed activation of Class IB p101/110 gamma PI3K. Expression of a gain-of-function PI3K or myristoylated Akt (myr-Akt) mimicked the inhibitory effect of PDGF on SM-alpha-actin and SM22 alpha expression. Pretreatment with LY 294002 reversed the inhibitory effect of PDGF. Expression of myr-Akt selectively inhibited AVP-induced activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinases, which we have shown are critical for induction of these genes. Nuclear extracts from PDGF-stimulated or myr-Akt expressing cells showed reduced serum response factor binding to SM-specific CArG elements. This was associated with appearance of serum response factor in the cytoplasm. These data indicate that activation of p85/p110 alpha/Akt mediates suppression of SM gene expression by PDGF.  相似文献   

15.
During vertebrate embryonic development, cardiac and skeletal muscle originates from distinct precursor populations. Despite the profound structural and functional differences in the striated muscle tissue they eventually form, such progenitors share many features such as components of contractile apparatus. In vertebrate embryos, the alpha-cardiac actin gene encodes a major component of the myofibril in both skeletal and cardiac muscle. Here, we show that expression of Xenopus cardiac alpha-actin in the myotomes and developing heart tube of the tadpole requires distinct enhancers within its proximal promoter. Using transgenic embryos, we find that mutations in the promoter-proximal CArG box and 5 bp downstream of it specifically eliminate expression of a GFP transgene within the developing heart, while high levels of expression in somitic muscle are maintained. This sequence is insufficient on its own to limit expression solely to the myocardium, such restriction requiring multiple elements within the proximal promoter. Two additional enhancers are active in skeletal muscle of the embryo, either one of which has to interact with the proximal CArG box for correct expression to be established. Transgenic reporters containing multimerised copies of CArG box 1 faithfully detect most sites of SRF expression in the developing embryo as do equivalent reporters containing the SRF binding site from the c-fos promoter. Significantly, while these motifs possess a different A/T core within the CC(A/T)(6)GG consensus and show no similarity in flanking sequence, each can interact with a myotome-specific distal enhancer of cardiac alpha-actin promoter, to confer appropriate cardiac alpha-actin-specific regulation of transgene expression. Together, these results suggest that the role of CArG box 1 in the cardiac alpha-actin gene promoter is to act solely as a high-affinity SRF binding site.  相似文献   

16.
17.
18.
Mutations in ras genes have been detected with high frequency in nonsmall cell lung cancer cells (NSCLC) and contribute to transformed growth of these cells. It has previously been shown that expression of oncogenic forms of Ras in these cells is associated with elevated expression of cytosolic phospholipase A(2) (cPLA(2)) and cyclooxygenase-2 (COX-2), resulting in high constitutive levels of prostaglandin production. To determine whether expression of constitutively active Ras is sufficient to induce expression of these enzymes in nontransformed cells, normal lung epithelial cells were transfected with H-Ras. Stable expression of H-Ras increased expression of cPLA(2) and COX-2 protein. Transient transfection with H-Ras increased promoter activity for both enzymes. H-Ras expression also activated all three families of MAP kinase: ERKs, JNKs, and p38 MAP kinase. Expression of constitutively active Raf did not increase either cPLA(2) or COX-2 promoter activity, but inhibition of the ERK pathway with pharmacological agents or expression of dominant negative ERK partially blocked the H-Ras-mediated induction of cPLA(2) promoter activity. Expression of dominant negative JNK kinases decreased cPLA(2) promoter activity in NSCLC cell lines and inhibited H-Ras-mediated induction in normal epithelial cells, whereas expression of constructs encoding constitutively active JNKs increased promoter activity. Inhibition of p38 MAP kinase or NF-kappaB had no effect on cPLA(2) expression. Truncational analysis revealed that the region of the cPLA(2) promoter from -58 to +12 contained sufficient elements to mediate H-Ras induction. We conclude that expression of oncogenic forms of Ras directly increases cPLA(2) expression in normal epithelial cells through activation of the JNK and ERK pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号