首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
WARP is a recently identified extracellular matrix molecule with restricted expression in permanent cartilages and a distinct subset of basement membranes in peripheral nerves, muscle, and the central nervous system vasculature. WARP interacts with perlecan, and we also demonstrate here that WARP binds type VI collagen, suggesting a function in bridging connective tissue structures. To understand the in vivo function of WARP, we generated a WARP-deficient mouse strain. WARP-null mice were healthy, viable, and fertile with no overt abnormalities. Motor function and behavioral testing demonstrated that WARP-null mice exhibited a significantly delayed response to acute painful stimulus and impaired fine motor coordination, although general motor function was not affected, suggesting compromised peripheral nerve function. Immunostaining of WARP-interacting ligands demonstrated that the collagen VI microfibrillar matrix was severely reduced and mislocalized in peripheral nerves of WARP-null mice. Further ultrastructural analysis revealed reduced fibrillar collagen deposition within the peripheral nerve extracellular matrix and abnormal partial fusing of adjacent Schwann cell basement membranes, suggesting an important function for WARP in stabilizing the association of the collagenous interstitial matrix with the Schwann cell basement membrane. In contrast, other WARP-deficient tissues such as articular cartilage, intervertebral discs, and skeletal muscle showed no detectable abnormalities, and basement membranes formed normally. Our data demonstrate that although WARP is not essential for basement membrane formation or musculoskeletal development, it has critical roles in the structure and function of peripheral nerves.WARP (von Willebrand A domain-related protein) is a recently described member of the von Willebrand factor type A domain (VWA2 domain) superfamily of extracellular matrix (ECM) molecules, adhesion proteins, and cell surface receptors (for review, see Ref. 1). The WARP protein is encoded by the Vwa1 (von Willebrand factor A domain-containing 1) gene and comprises a single N-terminal VWA domain containing a putative metal ion-dependent adhesion site (MIDAS) motif, two fibronectin type III repeats, and a unique C-terminal domain that contributes to WARP multimer formation (2, 3). Like many other VWA domain-containing extracellular molecules, WARP was predicted to participate in protein-protein interactions and in the formation of supramolecular structures. Recently WARP has been shown to interact with the heparan sulfate proteoglycan perlecan (3), and in the present study we identify type VI collagen as a ligand for WARP.WARP has a restricted distribution in developing cartilage tissues, where it is expressed at sites of joint cavitation and articular cartilage formation rather than cartilage structures that will undergo endochondral ossification (3). In adult tissues, WARP is highly restricted to the chondrocyte pericellular matrix in articular cartilage and fibrocartilages, where it co-localizes with perlecan and collagen VI (3). Several of the major basement membrane components have been found in the chondrocyte pericellular matrix, suggesting that this structure may be the functional equivalent of a basement membrane in cartilage tissues (4). Consistent with this hypothesis, recent data from our laboratory have demonstrated that WARP is a component of the basement membrane in a limited subset of tissues including the apical ectodermal ridge, the endomysium surrounding muscle fibers, the vasculature of the central nervous system, and the endoneurium of peripheral nerves (5). The principal components of basement membranes are type IV collagen, laminins, nidogens, and proteoglycans including perlecan; however, the composition, structure, and biological properties of basement membranes can differ considerably between different tissues (6, 7). Different isoforms of the major components contribute to the heterogeneity of basement membranes, but the contribution of quantitatively minor components to particular subtypes of basement membranes and their interactions with surrounding cells and ECM structures are poorly understood (8, 9).We, therefore, have generated mice with a targeted disruption of the WARP locus to determine the consequences of WARP deficiency on skeletal development and basement membrane formation. The homozygous null mice are viable, fertile, and do not exhibit overt abnormalities compared with wild type littermates. Neurological testing revealed that WARP-null mice exhibit a delayed response to acute painful stimulus and a disturbance in fine motor coordination, although general motor function is not impaired. Consistent with these findings, immunohistochemical analysis of peripheral nerves from WARP-null mice revealed that the collagen VI microfibrillar matrix was severely reduced and mislocalized compared with wild type mice. Furthermore, electron microscopic examination of the sciatic nerve demonstrated a reduction in the collagen I ECM and the unusual partial fusing of the basement membranes of neighboring axons. These data suggest an important role for WARP in organizing the peripheral nerve ECM and provides evidence for tissue-specific differences in the role of WARP in the assembly and/or integration of the ECM. In addition, our studies provide further evidence for the critical role of ECM structure and organization in nerve function.  相似文献   

2.
The juxtaglomerular apparatus (JGA) is a complex structure containing several components: the vessels, the extraglomerular mesangium and the distal tubule. These structures include cellular elements and an extracellular matrix (ECM). Collagenous (type IV collagen) and noncollagenous components of the basement membranes were studied. The localization of type IV collagen and of two extracellular glycoproteins (laminin and fibronectin) was investigated using immunofluorescent and immunoperoxidase labelled antibodies. Type IV collagen and laminin have the same localization on the JGA basement membranes. On the other hand, fibronectin is limited to the entrance of the glomerular stalk. On electron microscopy, type IV collagen is found in the basement membrane while fibronectin is restricted to certain areas of the extracellular matrix. These findings confirm data concerning the distribution of these three components in basement membranes and allow a better understanding of the histoarchitecture of the juxtaglomerular apparatus.  相似文献   

3.
4.
The localization of two noncollagenous components of basement membranes, laminin and entactin, was determined in rat kidney, muscle, and small intestine using electron immunohistochemistry. In the renal glomerulus anti-laminin antibodies reacted with the basement membrane of peripheral capillary loops and with mesangial matrix. In the peripheral capillary loop laminin was preferentially distributed in both laminae rarae. This was in contrast to anti-entactin that localized in peripheral capillary loops but not in mesangial matrix. Even in the peripheral capillary loops it had a different distribution than laminin. Entactin was found predominantly in the lamina rara interna. In renal tubular basement membranes both antibodies localized throughout the full thickness of the basement membranes, with laminin having a preferential distribution in the lamina rara, whereas entactin was more evenly distributed. In the basement membrane of the duodenal mucosa entactin localized in the lamina densa, whereas laminin was present in both laminae. In skeletal muscle both antibodies had similar localization in all basement membranes. These results demonstrate that entactin is an intrinsic component of basement membranes. They also demonstrate that basement membranes from different tissues have subtle variations in content and/or assembly of the different components. It is likely that these variations may be reflected in different functional properties.  相似文献   

5.
Muscle cells are surrounded by extracellular matrix, the components of which play an important role in signalling mechanisms involved in their development. In mice, loss of collagen XV, a component of basement membranes expressed primarily in skeletal muscles, results in a mild skeletal myopathy. We have determined the complete zebrafish collagen XV primary sequence and analysed its expression and function in embryogenesis. During the segmentation period, expression of the Col15a1 gene is mainly found in the notochord and its protein product is deposited exclusively in the peri-notochordal basement membrane. Morpholino mediated knock-down of Col15a1 causes defects in notochord differentiation and in fast and slow muscle formation as shown by persistence of axial mesodermal marker gene expression, disorganization of the peri-notochodal basement membrane and myofibrils, and a U-shape myotome. In addition, the number of medial fast-twitch muscle fibers was substantially increased, suggesting that the signalling by notochord derived Hh proteins is enhanced by loss of collagen XV. Consistent with this, there is a concomitant expansion of patched-1 expression in the myotome of morphant embryos. Together, these results indicate that collagen XV is required for notochord differentiation and muscle development in the zebrafish embryo and that it interplays with Shh signalling.  相似文献   

6.
WARP is a novel member of the von Willebrand factor A domain superfamily of extracellular matrix proteins that is expressed by chondrocytes. WARP is restricted to the presumptive articular cartilage zone prior to joint cavitation and to the articular cartilage and fibrocartilaginous elements in the joint, spine, and sternum during mouse embryonic development. In mature articular cartilage, WARP is highly specific for the chondrocyte pericellular microenvironment and co-localizes with perlecan, a prominent component of the chondrocyte pericellular region. WARP is present in the guanidine-soluble fraction of cartilage matrix extracts as a disulfide-bonded multimer, indicating that WARP is a strongly interacting component of the cartilage matrix. To investigate how WARP is integrated with the pericellular environment, we studied WARP binding to mouse perlecan using solid phase and surface plasmon resonance analysis. WARP interacts with domain III-2 of the perlecan core protein and the heparan sulfate chains of the perlecan domain I with K(D) values in the low nanomolar range. We conclude that WARP forms macromolecular structures that interact with perlecan to contribute to the assembly and/or maintenance of "permanent" cartilage structures during development and in mature cartilages.  相似文献   

7.
We report a new member of the von Willebrand factor A-domain protein superfamily, WARP (for von Willebrand factor A-domain-related protein). The full-length mouse WARP cDNA is 2.3 kb in size and predicts a protein of 415 amino acids which contains a signal sequence, a VA-like domain, two fibronectin type III-like repeats, and a short proline- and arginine-rich segment. WARP mRNA was expressed predominantly in chondrocytes and in vitro expression experiments in transfected 293 cells indicated that WARP is a secreted glycoprotein that forms disulphide-bonded oligomers. We conclude that WARP is a new member of the von Willebrand factor A-domain (VA-domain) superfamily of extracellular matrix proteins which may play a role in cartilage structure and function.  相似文献   

8.
The Fras1/Frem gene family encodes for structurally similar proteins of the extracellular matrix, functionally correlated with embryonic dermal-epidermal adhesion as deduced from the appearance of sub-epidermal blisters in mouse mutants compromising the function of Fras1, Frem1 and Frem2 proteins. Mutations in the human counterparts FRAS1 and FREM2 have been detected in patients suffering from Fraser syndrome. So far, Fras1/Frem proteins have been shown to be strictly colocalized in the sublamina densa of mouse epithelial basement membranes during development. Here, we focused on the characterization of the localization pattern of the aforementioned proteins, in various parts of the adult mouse skin as well as a range of organs and tissues. Frem3 was present in a broad range of epithelial basement membranes where Fras1, Frem1 and Frem2 were missing. The localization profile of Frem3 coincided with that of collagen VII in all skin basement membranes but differed in that Frem3 was additionally found in the basement membrane of several internal epithelia, where collagen VII was absent. Fras1 and Frem2 were colocalized with Frem3 in the basement membrane of certain skin parts, underlying the thin-layer, of rapidly proliferating keratinocytes, whereas Frem1 was detected only in the basement membrane of the tail. The localization pattern of Fras1 and Frem2 was indistinguishable, while both proteins along with Frem3 could be detected even in the absence of Frem1.  相似文献   

9.
Entactin, a novel basal lamina-associated sulfated glycoprotein   总被引:45,自引:0,他引:45  
A sulfated glycoprotein, entactin, of apparent molecular weight 158,000 has been isolated from an extracellular basement membrane-like matrix. This matrix is elaborated in cell culture by a mouse endodermal cell line. Antibodies prepared in rabbits against this sulfated glycoprotein react with mouse and rat basement membranes from a variety of tissues. These antibodies also react in a specific manner with a discrete component of mouse and rat kidney glomeruli. The electrophoretic mobility of this component is identical to that of entactin. The mouse kidney antigen, as shown by immunoelectron microscopic studies, is predominantly localized at the surface of epithelial cells of tubules and glomeruli adjacent to the basement membrane. Some antigen is also present in the basal lamina adjacent to the epithelial cells. Entactin is distinct from the basement membrane-associated protein GP-2, a protein similar to laminin. Entactin differs from GP-2 in electrophoretic mobility, cyanogen bromide peptide fragmentation pattern, immunological cross-reactivity, and incorporation of H235SO4. Entactin is insensitive to treatment with chrondroitinase ABC. It is suggested that this molecule plays a role in the interaction of the extracellular matrix and the cell surface.  相似文献   

10.
Basement membranes are cell surface associated extracellular matrices containing laminins, type IV collagens, nidogens, perlecan, agrin, and other macromolecules. Biochemical and ultrastructural studies have suggested that basement membrane assembly and integrity is provided through multiple component interactions consisting of self-polymerizations, inter-component binding, and cell surface adhesions. Mutagenesis in vertebrate embryos and embryoid bodies have led to revisions of this model, providing evidence that laminins are essential for the formation of an initial polymeric scaffold of cell-attached matrix which matures in stability, ligand diversity, and functional complexity as additional matrix components are integrated into the scaffold. These studies also demonstrate that basement membrane components differentially promote cell polarization, organize and compartmentalize developing tissues, and maintain adult tissue function.  相似文献   

11.
Collagen VI and WARP are extracellular structural macromolecules present in cartilage and associated with BM suprastructures in non-skeletal tissues. We have previously shown that in WARP-deficient mice, collagen VI is specifically reduced in regions of the peripheral nerve ECM where WARP is expressed, suggesting that both macromolecules are part of the same suprastructure. The object of this study was to conduct a detailed analysis of WARP-collagen VI interactions in vitro in cartilage, a tissue rich in WARP and collagen VI. Immunohistochemical analysis of mouse and human articular cartilage showed that WARP and collagen VI co-localize in the pericellular matrix of superficial zone articular chondrocytes. EM analysis on extracts of human articular cartilage showed that WARP associates closely with collagen VI-containing suprastructures. Additional evidence of an interaction is provided by immunogold EM and immunoblot analysis showing that WARP was present in collagen VI-containing networks isolated from cartilage. Further characterization were done by solid phase binding studies and reconstitution experiments using purified recombinant WARP and isolated collagen VI. Collagen VI binds to WARP with an apparent Kd of approximately 22 nM and the binding site(s) for WARP resides within the triple helical domain since WARP binds to both intact collagen VI tetramers and pepsinized collagen VI. Together, these data confirm and extend our previous findings by demonstrating that WARP and collagen VI form high affinity associations in vivo in cartilage. We conclude that WARP is ideally placed to function as an adapter protein in the cartilage pericellular matrix.  相似文献   

12.
Summary Fibulin-1 and fibulin-2, two recently identified extracellular matrix proteins with a homologous domain structure, are known to bind various extracellular ligands and calcium. In this study, they have been localized at the light microscopical level in human embryos of gestational weeks 4–10, using polyclonal antibodies. Identical localization patterns were observed for the two fibulins in most of the tissues. In the heart, the endocardial cushion tissue and endocardium, but not the myocardium, were stained, as were the basement membrane zones and adventitia of blood vessels. Staining was also observed in the perichondrium and calcifying regions of developing bones. Moreover, reactions occurred with the gut subepithelium and epithelial basement membranes of the skin. Differences in staining patterns, however, were observed in various neural structures. Fibulin-1 was prominent in the matrix of the leptomeningeal anlage, in basement membranes of the neuroepithelium and the perineurium of peripheral nerves. Fibulin-2 was detected primarily within the neuropithelium, spinal ganglia and peripheral nerves. The early embryonic expression of both fibulins indicates specific roles during organ development and, in particular, involvement in the differentiation of heart, skeletal and neuronal structures.  相似文献   

13.

Background

Von Willebrand A domain Related Protein (WARP), is a recently identified extracellular matrix protein. Based upon its involvement in matrix biology and its expression in the heart, we hypothesized that WARP regulates cardiac remodeling processes in the post-infarct healing process.

Methods and results

In the mouse model of myocardial infarction (MI), WARP expression increased in the infarcted area 3-days post-MI. In the healthy myocardium WARP localized with perlecan in the basement membrane, which was disrupted upon injury. In vitro studies showed high expression of WARP by cardiac fibroblasts, which further increases upon TGFβ stimulation. Furthermore, WARP expression correlated with aSMA and COL1 expression, markers of fibroblast to myofibroblast transition, in vivo and in vitro. Finally, WARP knockdown in vitro affected extra- and intracellular basic fibroblast growth factor production in myofibroblasts. To investigate the function for WARP in infarction healing, we performed an MI study in WARP knockout (KO) mice backcrossed more than 10 times on an Australian C57Bl/6-J background and bred in-house, and compared to wild type (WT) mice of the same C57Bl/6-J strain but of commercial European origin. WARP KO mice showed no mortality after MI, whereas 40% of the WT mice died due to cardiac rupture. However, when WARP KO mice were backcrossed on the European C57Bl/6-J background and bred heterozygous in-house, the previously seen protective effect in the WARP KO mice after MI was lost. Importantly, comparison of the cardiac response post-MI in WT mice bred heterozygous in-house versus commercially purchased WT mice revealed differences in cardiac rupture.

Conclusion

These data demonstrate a redundant role for WARP in the wound healing process after MI but demonstrate that the continental/breeding/housing origin of mice of the same C57Bl6-J strain is critical in determining the susceptibility to cardiac rupture and stress the importance of using the correct littermate controls.  相似文献   

14.
The connective tissue of the rat lung: electron immunohistochemical studies   总被引:6,自引:0,他引:6  
The ultrastructural distribution of specific connective-tissue components in the normal rat lung was studied by electron immunohistochemistry. Three of these components were localized: type I collagen, fibronectin and laminin. Type I collagen was present not only in major airways and vascular structures, but also in alveolar septa. Laminin was found in all basement membranes, and only in basement membranes, demonstrating once more that this glycoprotein is an intrinsic component of the basement membrane. Fibronectin was found free in the interstitium and on the surfaces of collagen fibers. The basement membranes of bronchial, glandular and endothelial cells of large vessels lacked fibronectin; however, capillary endothelial and occasionally epithelial alveolar basement membranes contained some fibronectin in an irregular, spotty distribution. This localization suggests that in the lung, as in other tissues, fibronectin is not an intrinsic component of the basement membrane, but rather a stromal and plasma protein. Only basement membranes in the alveolar parenchyma contained "trapped" plasma fibronectin.  相似文献   

15.
Reconstituted basement membranes and extracellular matrices have been demonstrated to affect, positively and dramatically, the production of milk proteins in cultured mammary epithelial cells. Here we show that both the expression and the deposition of extracellular matrix components themselves are regulated by substratum. The steady-state levels of the laminin, type IV collagen, and fibronectin mRNAs in mammary epithelial cells cultured on plastic dishes and on type I collagen gels have been examined, as has the ability of these cells to synthesize, secrete, and deposit laminin and other, extracellular matrix proteins. We demonstrate de novo synthesis of a basement membrane by cells cultured on type I collagen gels which have been floated into the medium. Expression of the mRNA and proteins of basement membranes, however, are quite low in these cultures. In contrast, the levels of laminin, type IV collagen, and fibronectin mRNAs are highest in cells cultured on plastic surfaces, where no basement membrane is deposited. It is suggested that the interaction between epithelial cells and both basement membrane and stromally derived matrices exerts a negative influence on the expression of mRNA for extracellular matrix components. In addition, we show that the capacity for lactational differentiation correlates with conditions that favor the deposition of a continuous basement membrane, and argue that the interaction between specialized epithelial cells and stroma enables them to create their own microenvironment for accurate signal transduction and phenotypic function.  相似文献   

16.
17.
Collagen XIII and the homologous collagens XXIII and XXV form a subgroup of type II transmembrane proteins within the collagen superfamily. Collagen XIII consists of a short cytosolic domain, a transmembrane domain and a large extracellular ectodomain, which may be shed into the pericellular matrix. It has been proposed that collagen XIII may function as an adhesion molecule, due to its cellular localization at focal contacts, numerous interactions with basement membrane (BM) and other extracellular matrix (ECM) proteins and expression at various cell-cell and cell-matrix junctions. Recent in vivo studies highlight its involvement in the development, differentiation and maturation of musculoskeletal tissues and vessels and in maintaining tissue integrity.  相似文献   

18.
Extracellular matrix regulates expression of the TGF-beta 1 gene   总被引:11,自引:3,他引:8       下载免费PDF全文
  相似文献   

19.
Two monoclonal antibodies raised against laminin isolated from a mouse parietal yolk sac cell line were used for immunohistochemical studies of basement membranes of the mouse embryo and various fetal and adult tissues. No immunoreactivity with either of the two monoclonal antibodies could be detected in the preimplantation-stage embryos, although it has been shown that these embryos contain extracellular laminin reactive with the conventional polyclonal antilaminin antibodies. Reichert's membrane in early postimplantation stages of development reacted with the monoclonal antibody LAM-I but not with the antibody LAM-II. However, from day 8 of pregnancy onward the Reichert's membrane reacted with both antibodies. Basement membranes of the embryo proper were unreactive with both monoclonal antibodies until day 12 of pregnancy. By day 14 some basement membranes of the fetal tissues became reactive with one or both monoclonal antibodies, whereas others remained still unreactive. In the 17-d fetus and the newborn mouse most of the basement membranes reacted with both monoclonal antibodies, whereas others still reacted with only one. Similar heterogeneity in the immunoreactivity of basement membranes of various tissues was noted in the adult mouse as well. These results indicate that the immunoreactivity of laminin in the extracellular matrix changes during development and that the basement membranes in various anatomic locations display heterogeneity even in the adult mouse.  相似文献   

20.
The ultrastructure of basement membranes has a homogeneous appearance. The enormous cell biological importance of basement membranes and their components for cell proliferation, migration and differentiation implies that their composition is more complex than their structure suggests. To elucidate the molecular composition of basement membranes in vivo, we optimised immunogold histochemistry to allow the determination of the molecular arrangement of matrix molecules. Basically, we apply a mild fixation and embed the tissues in the hydrophilic LR-Gold. This preserves the basement membrane with a quality similar to freeze substitution. The application of two antibodies directed toward the C- and N-terminal ends of a molecule and coupled to gold particles of different sizes allows determination of the orientation of a molecule within the basement membrane. We were able to demonstrate that the molecular orientation of the laminin-1 molecule changes in the basement membrane according to cell biological needs. We also showed that ultrastructurally identical basement membranes like the ones of the proximal and distal tubules of the kidney have a differing molecular arrangement. Integrin alpha7 influences the molecular composition of the basement membranes at the myotendinous junction. With the help of double labelling at the ultrastructural level we could show that nidogen-1 is co-localised with laminin-1 and only found in fully developed, mature basement membranes. In general, laminin-1, nidogen-1 and collagen type IV are localised over the entire width of basement membranes, with laminin-1 and nidogen-1 co-localised, in accordance with the current basement membrane models. Incidentally, our investigations warn us, that not every matrix protein found at the light microscopic level as a linear staining pattern underneath an epithelium (basement membrane zone) is a real basement membrane component when investigated at the ultrastructural level. Instead, one and the same molecule, e.g. endostatin, can be a basement membrane component in one organ and a matrix molecule in another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号