首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several of the ATP binding cassette (ABC) transporters have recently been shown to play important roles in reverse cholesterol transport (RCT) and prevention of atherosclerosis. In the liver, ABCG5 and ABCG8 have been proposed to efflux sterols into the bile for excretion. ABCG5 and ABCG8 also limit absorption of dietary cholesterol and plant sterols in the intestine. In macrophages, ABCA1 and ABCG1 mediate cholesterol removal from these cells to HDL. Many of these ABC transporters are regulated by the liver X receptor (LXR). We have previously shown that endotoxin (lipopolysaccharide) down-regulates LXR in rodent liver. In the present study, we examined the in vivo and in vitro regulation of these ABC transporters by endotoxin. We found that endotoxin significantly decreased mRNA levels of ABCG5 and ABCG8 in the liver, but not in the small intestine. When endotoxin or cytokines (tumor necrosis factor and interleukin-1) were incubated with J774 murine macrophages, the mRNA levels of ABCA1 were decreased. This effect was rapid and sustained, and was associated with a reduction in ABCA1 protein levels. Endotoxin and cytokines also decreased ABCG1 mRNA levels in J774 cells. Although LXR is a positive regulator of ABCA1 and ABCG1, we did not observe a reduction in protein levels of LXR or in binding of nuclear proteins to an LXR response element in J774 cells. The decrease in ABCG5 and ABCG8 levels in the liver as well as a reduction in ABCA1 and ABCG1 in macrophages during the host response to infection and inflammation coupled with other previously described changes in the RCT pathway may aggravate atherosclerosis.  相似文献   

2.
脑是富含胆固醇的器官,机体大约有25%的胆固醇集中在脑组织中.ATP结合盒超家族转运蛋白对脑组织中胆固醇的膜外转运和动态平衡起着重要的调节作用.研究发现,ATP结合盒超家族转运蛋白亚体ABCG1、ABCG4和ABCA1在成体脑组织中存在不同程度的表达,一种或多种亚体的缺失可以导致神经退行性病变.然而,ATP结合盒超家族转运蛋白亚体对脑发育过程中脑胆固醇动态变化的调节缺乏相关性的报道.在本研究中,从低胆固醇饮食喂养的C57BL/6J小鼠中获取出生后不同发育时期的脑组织,对ABCG1、ABCG4和ABCA1的mRNA与蛋白质表达水平进行测定,并对脑组织和血清中ATP结合盒超家族转运蛋白的表达水平与胆固醇水平的相关性进行研究.同时,使用ABCG1、ABCG4单一基因敲除鼠和ABCG1、ABCG4双基因敲除鼠,研究ATP结合盒超家族转运蛋白对与胆固醇合成的相关基因表达的影响以及对脑组织胆固醇代谢的调节作用.结果发现,ABCG1、ABCG4和ABCA1在机体多个器官中均有表达,但ABCG1和ABCG4在小鼠脑组织中表达量最高.在脑组织发育过程中,ABCG1和ABCG4mRNA水平呈现明显的表达时效性,小鼠于出生后42天达到峰值,而ABCA1 mRNA的表达水平无明显变化.血清和脑组织中中酯化型胆固醇水平呈双高峰分布,也于出生后42天达到最高.基因敲除鼠模型显示,单一敲除ABCG1或者ABCG4基因对脑组织胆固醇水平无明显影响,而ABCG1和ABCG4基因的同时缺失导致脑胆固醇水平显著升高,并明显降低胆固醇合成相关基因的表达水平.本研究表明,在脑发育成熟过程中,ATP结合盒超家族转运蛋白亚体ABCG1和ABCG4,而非ABCA1,以调节脑胆固醇的膜外转运;ABCG1和ABCG4互补调控脑胆固醇的动态平衡.  相似文献   

3.
4.
Atherosclerosis is one of the most common causes of death worldwide. Epidemiology studies firmly established an inverse relationship between atherogenesis and distorted lipid metabolism, in particular, higher levels of total cholesterol, an accumulation of CH-laden macrophages (foam cells), and lower plasma levels of antiatherogenic high density lipoprotein (HDL). It is believed that the reverse cholesterol transport, a process that removes excess cholesterol from peripheral tissues/cells including macrophages to circulating HDL, is one of the main mechanisms responsible for anti-atherogenic properties of HDL. The key proteins of reverse cholesterol transport—ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1)—mediate the cholesterol efflux from macrophages and prevent their transformation into foam cells. This review focuses on the role of ABC transporters A1 and G1 in the pathogenesis of atherosclerosis.  相似文献   

5.
Macrophages respond to cholesterol accumulation by increasing cholesterol efflux, which is mediated by activation of the nuclear liver X receptor (LXR) and ATP binding cassette (ABC) transporters. In the present study, we investigated whether foam cell formation induced by phospholipase A(2)-modified low-density lipoprotein (PLA-LDL) influences LXR activity and cholesterol efflux in primary human monocyte-derived macrophages (MDMs). Macrophages were treated with PLA-LDL and expression of the LXR target genes ABCA1 and ABCG1 was analyzed by quantitative PCR and western blot. PLA-LDL time-dependently up-regulated ABCA1 and ABCG1 mRNA and protein. Removal of non-esterified fatty acids from PLA-LDL particles did not influence the induction of ABC transporters. A role of LXR in PLA-LDL-stimulated ABCG1 expression was verified by LXR-knockdown and luciferase reporter assays using a construct containing a LXR response element from the ABCG1 gene. Functionally, cholesterol efflux to apolipoprotein A-I and high-density lipoprotein was higher in PLA-LDL treated cells compared to controls. Together, these results demonstrate that in primary human MDMs PLA-LDL induces ABC transporter expression via LXR activation. A concomitantly increased cholesterol efflux may prevent excessive cholesterol accumulation and thus, attenuate foam cell formation.  相似文献   

6.
The association of hypercholesterolemia and obesity with airway hyperresponsiveness has drawn increasing attention to the potential role of cholesterol and lipid homeostasis in lung physiology and in chronic pulmonary diseases such as asthma. We have recently shown that activation of the nuclear hormone receptor liver X receptor (LXR) stimulates cholesterol efflux in human airway smooth muscle (hASM) cells and induces expression of the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, members of a family of proteins that mediate reverse cholesterol and phospholipid transport. We show here that ABCA1 is responsible for all LXR-mediated cholesterol and phospholipid efflux to both apolipoprotein AI and high-density lipoprotein acceptors. In contrast, ABCG1 does not appear to be required for this process. Moreover, we show that hASM cells respond to increased levels of cholesterol by inducing expression of ABCA1 and ABCG1 transporters, a process that is dependent on LXR expression. These findings establish a critical role for ABCA1 in reverse cholesterol and phospholipid transport in airway smooth muscle cells and suggest that dysregulation of cholesterol homeostasis in these cells may be important in the pathogenesis of diseases such as asthma.  相似文献   

7.
8.
9.
10.
Central nervous system lipoproteins mediate the exchange of cholesterol between cells and support synaptogenesis and neuronal growth. The primary source of lipoproteins in the brain is astroglia cells that synthesize and secrete apolipoprotein (apo) E in high density lipoprotein-like particles. Small quantities of apoA1, derived from the peripheral circulation, are also present in the brain. In addition to the direct secretion of apoE-containing lipoproteins from astroglia, glia-derived lipoproteins are thought to be formed by cholesterol efflux to extracellular apolipoproteins via ATP-binding cassette (ABC) transporters. We used cultured cerebellar murine astroglia to investigate the relationship among cholesterol availability, apoE secretion, expression of ABCA1 and ABCG1, and cholesterol efflux. In many cell types, cholesterol content, ABCA1 expression, and cholesterol efflux are closely correlated. In contrast, cholesterol enrichment of glia failed to increase ABCA1 expression, although ABCG1 expression and cholesterol efflux to apoA1 were increased. Moreover, the liver X receptor (LXR) agonist TO901317 up-regulated ABCA1 and ABCG1 expression in glia without stimulating cholesterol efflux. Larger lipoproteins were generated when glia were enriched with cholesterol, whereas treatment with the LXR agonist produced smaller particles that were eliminated when the glia were loaded with cholesterol. We also used glia from ApoE(-/-) mice to distinguish between direct lipoprotein secretion and the extracellular generation of lipoproteins. Our observations indicate that partially lipidated apoE, secreted directly by glia, is likely to be the major extracellular acceptor of cholesterol released from glia in a process mediated by ABCG1.  相似文献   

11.
ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 mediate the efflux of cholesterol and other sterols. Both transporters are expressed on the fetal capillaries of the placenta and are involved in maternal-to-fetal cholesterol delivery. In this study, we report that ABCA1 and ABCG1 are also present on the syncytiotrophoblast, the maternal facing placental membrane. Syncytial ABCA1 expression is apical, suggesting a role in cholesterol efflux to the mother, while ABCG1 is expressed basolaterally indicating transport to the fetus. Silencing of ABCA1 expression in primary trophoblasts in culture, or pharmacological antagonism by glyburide, decreased cholesterol efflux to apolipoprotein A-I (apoA-I) compared to controls, while ABCG1-silencing decreased cholesterol efflux to high density lipoproteins (HDL). In contrast, treatment with endogenous or synthetic LXR α/β ligands such as T0901317 increased ABCA1 and ABCG1 expression and enhanced cholesterol efflux to apoA-I and HDL, respectively, while treatment with pharmacological PPAR-α or -γ ligands was without effect. Trophoblasts transfected with ABCA1 or ABCG1 siRNA were more sensitive to toxic oxysterols substrates (25-hydroxycholesterol and 7-ketocholesterol) compared to mock-transfected cells, while prior treatment with T0901317 reduced oxysterol-mediated toxicity. These results identify syncytial ABCA1 and ABCG1 as important, inducible cholesterol transporters which also prevent placental accumulation of cytotoxic oxysterols.  相似文献   

12.
In this study we analyzed functions of ATP-binding cassette (ABC) transporters involved in sterol transport from Caco-2 cells. Treatment with a synthetic liver x receptor ligand elevated both mRNA and protein levels of ABCG5, G8, and ABCA1. The ligand stimulated cholesterol efflux, suggesting that ABC transporters are involved in it. To identify the acceptors of cholesterol, potential molecules such as apolipoprotein A-I, glycocholic acid, phosphatidylcholine, and bile acid micelles were added to the medium. Apo A-I, a known acceptor of cholesterol transported by ABCA1, elevated cholesterol efflux on the basal side, whereas the others raised cholesterol efflux on the apical side. Moreover, bile acid micelles preferentially augmented plant sterol efflux rather than cholesterol. Finally, in HEK293 cells stably expressing ABCG5/G8, bile acid micelle-mediated sterol efflux was significantly accelerated. These results indicate that ABCG5/G8, unlike ABCA1, together with bile acids should participate in sterol efflux on the apical surface of Caco-2 cells.  相似文献   

13.
Plasma high density lipoprotein (HDL)-cholesterol levels are inversely correlated to the risk of atherosclerotic cardiovascular diseases. Reverse cholesterol transport (RCT) is one of the major protective systems against atherosclerosis, in which HDL particles play a crucial role to carry cholesterol derived from peripheral tissues to the liver. Recently, ATP-binding cassette transporters (ABCA1, ABCG1) and scavenger receptor (SR-BI) have been identified as important membrane receptors to generate HDL by removing cholesterol from foam cells. Adiponectin (APN) secreted from adipocytes is one of the important molecules to inhibit the development of atherosclerosis. Epidemiological studies have revealed a positive correlation between plasma HDL-cholesterol and APN concentrations in humans, although its mechanism has not been clarified. Therefore, in the present study, we investigated the role of APN on RCT, in particular, cellular cholesterol efflux from human monocyte-derived and APN-knockout (APN-KO) mice macrophages. APN up-regulated the expression of ABCA1 in human macrophages, respectively. ApoA-1-mediated cholesterol efflux from macrophages was also increased by APN treatment. Furthermore, the mRNA expression of LXRα and PPARγ was increased by APN. In APN-KO mice, the expression of ABCA1, LXRα, PPARγ, and apoA-I-mediated cholesterol efflux was decreased compared with wild-type mice. In summary, APN might protect against atherosclerosis by increasing apoA-I-mediated cholesterol efflux from macrophages through ABCA1-dependent pathway by the activation of LXRα and PPARγ.  相似文献   

14.
Low density lipoprotein receptor (LDLR) mutations cause familial hypercholesterolemia and early atherosclerosis. ABCA1 facilitates free cholesterol efflux from peripheral tissues. We investigated the effects of LDLR deletion (LDLR(-/-)) on ABCA1 expression. LDLR(-/-) macrophages had reduced basal levels of ABCA1, ABCG1, and cholesterol efflux. A high fat diet increased cholesterol in LDLR(-/-) macrophages but not wild type cells. A liver X receptor (LXR) agonist induced expression of ABCA1, ABCG1, and cholesterol efflux in both LDLR(-/-) and wild type macrophages, whereas expression of LXRalpha or LXRbeta was similar. Interestingly, oxidized LDL induced more ABCA1 in wild type macrophages than LDLR(-/-) cells. LDL induced ABCA1 expression in wild type cells but inhibited it in LDLR(-/-) macrophages in a concentration-dependent manner. However, lipoproteins regulated ABCG1 expression similarly in LDLR(-/-) and wild type macrophages. Cholesterol or oxysterols induced ABCA1 expression in wild type macrophages but had little or inhibitory effects on ABCA1 expression in LDLR(-/-) macrophages. Active sterol regulatory element-binding protein 1a (SREBP1a) inhibited ABCA1 promoter activity in an LXRE-dependent manner and decreased both macrophage ABCA1 expression and cholesterol efflux. Expression of ABCA1 in animal tissues was inversely correlated to active SREBP1. Oxysterols inactivated SREBP1 in wild type macrophages but not in LDLR(-/-) cells. Oxysterol synergized with nonsteroid LXR ligand induced ABCA1 expression in wild type macrophages but blocked induction in LDLR(-/-) cells. Taken together, our studies suggest that LDLR is critical in the regulation of cholesterol efflux and ABCA1 expression in macrophage. Lack of the LDLR impairs sterol-induced macrophage ABCA1 expression by a sterol regulatory element-binding protein 1-dependent mechanism that can result in reduced cholesterol efflux and lipid accumulation in macrophages under hypercholesterolemic conditions.  相似文献   

15.
Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α.  相似文献   

16.
The ABC lipid transporters, ABCA1 and ABCG1, are essential for maintaining lipid homeostasis in cells such as macrophages by exporting excess cholesterol to extracellular acceptors. These transporters are highly regulated at the post-translational level, including protein ubiquitination. Our aim was to investigate the role of the E3 ubiquitin ligase HECTD1, recently identified as associated with ABCG1, on ABCG1 and ABCA1 protein levels and cholesterol export function. Here, we show that HECTD1 protein is widely expressed in a range of human and murine primary cells and cell lines, including macrophages, neuronal cells and insulin secreting β-cells. siRNA knockdown of HECTD1 unexpectedly decreased overexpressed ABCG1 protein levels and cell growth, but increased native ABCA1 protein in CHO-K1 cells. Knockdown of HECTD1 in unloaded THP-1 macrophages did not affect ABCG1 but significantly increased ABCA1 protein levels, in wild-type as well as THP-1 cells that do not express ABCG1. Cholesterol export from macrophages to apoA-I over time was increased after knockdown of HECTD1, however these effects were not sustained in cholesterol-loaded cells. In conclusion, we have identified a new candidate, the E3 ubiquitin ligase HECTD1, that may be involved in the regulation of ABCA1-mediated cholesterol export from unloaded macrophages to apoA-I. The exact mechanism by which this ligase affects this pathway remains to be elucidated.  相似文献   

17.
Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1   总被引:11,自引:0,他引:11  
Plasma levels of high-density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) are inversely correlated with the risk of cardiovascular disease. One major atheroprotective mechanism of HDL and apoA-I is their role in reverse cholesterol transport, i.e., the transport of excess cholesterol from foam cells to the liver for secretion. The ATP-binding cassette transporters ABCA1 and ABCG1 play a pivotal role in this process by effluxing lipids from foam cells to apoA-I and HDL, respectively. In the liver, ABCA1 activity is one rate-limiting step in the formation of HDL. In macrophages, ABCA1 and ABCG1 prevent the excessive accumulation of lipids and thereby protect the arteries from developing atherosclerotic lesions. However, the mechanisms by which ABCA1 and ABCG1 mediate lipid removal are still unclear. Particularly, three questions remain controversial and are discussed in this review: (1) Do apoA-I and HDL directly interact with ABCA1 and ABCG1, respectively? (2) Does cholesterol efflux involve retroendocytosis of apoA-I or HDL? (3) Which lipids are directly transported by ABCA1 and ABCG1?  相似文献   

18.
α-Lipoic acid (α-LA), a key cofactor in cellular energy metabolism, has protective activities in atherosclerosis, yet the detailed mechanisms are not fully understood. In this study, we examined whether α-LA affects foam cell formation and its underlying molecular mechanisms in murine macrophages. Treatment with α-LA markedly attenuated oxidized low-density lipoprotein (oxLDL)-mediated cholesterol accumulation in macrophages, which was due to increased cholesterol efflux. Additionally, α-LA treatment dose-dependently increased protein levels of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 but had no effect on the protein expression of SR-A, CD36, or SR-BI involved in cholesterol homeostasis. Furthermore, α-LA increased the mRNA expression of ABCA1 and ABCG1. The upregulation of ABCA1 and ABCG1 by α-LA depended on liver X receptor α (LXRα), as evidenced by an increase in the nuclear levels of LXRα and LXRE-mediated luciferase activity and its prevention of the expression of ABCA1 and ABCG1 after inhibition of LXRα activity by the pharmacological inhibitor geranylgeranyl pyrophosphate (GGPP) or knockdown of LXRα expression with small interfering RNA (siRNA). Consistently, α-LA-mediated suppression of oxLDL-induced lipid accumulation was abolished by GGPP or LXRα siRNA treatment. In conclusion, LXRα-dependent upregulation of ABCA1 and ABCG1 may mediate the beneficial effect of α-LA on foam cell formation.  相似文献   

19.
20.
PURPOSE OF REVIEW: The initial steps of reverse cholesterol transport involve export of cholesterol from peripheral cells to plasma lipoproteins for subsequent delivery to the liver. The review discusses recent developments in our understanding of how these steps occur, with particular emphasis on the macrophage, the major site of cellular cholesterol accumulation in atherosclerosis. RECENT FINDINGS: ATP binding cassette transporter (ABC) A1 exports cholesterol and phospholipid to lipid-free apolipoproteins, while ATP binding cassette transporter G1 and scavenger receptor BI export cholesterol to phospholipid-containing acceptors. ABCA1-dependent cholesterol export involves an initial interaction of apolipoprotein AI with lipid raft membrane domains, although ABCA1 and most exported cholesterol are not raft associated. ABCG1 exports cholesterol to HDL and other phospholipid-containing acceptors. These include particles generated during lipidation of apoAI by ABCA1, suggesting that the two transporters cooperate in cholesterol export. Scavenger receptor BI is atheroprotective, mediating clearance of HDL cholesterol by the liver. The relative contributions of scavenger receptor BI and ABCG to cholesterol export to HDL from macrophages is unclear and may depend on cellular cholesterol status and the cholesterol gradient between cell and acceptor. SUMMARY: The presence of distinct pathways for cholesterol efflux to lipid-free apolipoprotein AI and phospholipid-containing HDL species clarifies our understanding of reverse cholesterol transport, and provides new opportunities for its therapeutic manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号