首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemical States of Bacterial Spores: Dry-Heat Resistance   总被引:12,自引:5,他引:7       下载免费PDF全文
Mature bacterial spores can be manipulated by chemical pretreatments between states sensitive and resistant to dry heat. The two chemical forms of the spore differ in dry-heat resistance by about an order of magnitude. Log survivor curves for each chemical state were approximately straight lines. The temperature dependence of dry-heat resistance for each chemical state was similar to that usually found for dry-heat resistance. A method of testing spore resistance to dry heat has been designed to minimize artifacts resulting from (i) change of chemical state during the test, (ii) effects of water vapor activity, (iii) incomplete recovery of spores from the test container and clumping of spores. Implications of the existence of different chemical resistance states for experimental strategy and testing of dry-heat resistance are discussed.  相似文献   

2.
A number of mechanisms are responsible for the resistance of spores of Bacillus species to heat, radiation and chemicals and for spore killing by these agents. Spore resistance to wet heat is determined largely by the water content of spore core, which is much lower than that in the growing cell protoplast. A lower core water content generally gives more wet heat-resistant spores. The level and type of spore core mineral ions and the intrinsic stability of total spore proteins also play a role in spore wet heat resistance, and the saturation of spore DNA with alpha/beta-type small, acid-soluble spore proteins (SASP) protects DNA against wet heat damage. However, how wet heat kills spores is not clear, although it is not through DNA damage. The alpha/beta-type SASP are also important in spore resistance to dry heat, as is DNA repair in spore outgrowth, as Bacillus subtilis spores are killed by dry heat via DNA damage. Both UV and gamma-radiation also kill spores via DNA damage. The mechanism of spore resistance to gamma-radiation is not well understood, although the alpha/beta-type SASP are not involved. In contrast, spore UV resistance is due largely to an alteration in spore DNA photochemistry caused by the binding of alpha/beta-type SASP to the DNA, and to a lesser extent to the photosensitizing action of the spore core's large pool of dipicolinic acid. UV irradiation of spores at 254 nm does not generate the cyclobutane dimers (CPDs) and (6-4)-photoproducts (64PPs) formed between adjacent pyrimidines in growing cells, but rather a thymidyl-thymidine adduct termed spore photoproduct (SP). While SP is formed in spores with approximately the same quantum efficiency as that for generation of CPDs and 64PPs in growing cells, SP is repaired rapidly and efficiently in spore outgrowth by a number of repair systems, at least one of which is specific for SP. Some chemicals (e.g. nitrous acid, formaldehyde) again kill spores by DNA damage, while others, in particular oxidizing agents, appear to damage the spore's inner membrane so that this membrane ruptures upon spore germination and outgrowth. There are also other agents such as glutaraldehyde for which the mechanism of spore killing is unclear. Factors important in spore chemical resistance vary with the chemical, but include: (i) the spore coat proteins that likely react with and detoxify chemical agents; (ii) the relative impermeability of the spore's inner membrane that restricts access of exogenous chemicals to the spore core; (iii) the protection of spore DNA by its saturation with alpha/beta-type SASP; and (iv) DNA repair for agents that kill spores via DNA damage. Given the importance of the killing of spores of Bacillus species in the food and medical products industry, a deeper understanding of the mechanisms of spore resistance and killing may lead to improved methods for spore destruction.  相似文献   

3.
The role of water, its distribution and its implication in the heat resistance of dried spores was investigated using DSC (Differential Scanning Calorimetry). Bacillus subtilis spores equilibrated at different water activity levels were heat treated under strictly controlled conditions. The temperature was increased linearly in pans with different resistances to pressure. Data from the heat-related transitions occurring in the spores were recorded and spore viability was assessed at different stages during DSC. The thermodynamic transitions observed were related to the water status in the spores and spore survival. The results demonstrated that water still remained in the spore core when water activity was as low as 0.13. The first transition occurred at around 150 °C and was assumed to be related to a mobile fraction of water from the outer layers of the spore. The second occurred at around 200 °C, which could correspond to a fraction of water embedded in the spore core. Moreover, the results showed that spore destruction during heating was favored by the amount of water remaining in the spore. The changes in their structure were also evaluated by FTIR (Fourier Transform Infrared Spectroscopy). This work offers new understanding about the distribution of water in spores and presents new elements on the heat resistance of spores in relation to their water content.  相似文献   

4.
Having available the separate chemical resistance forms of Clostridium botulinum 62A spores from an investigation of the effect of spore form on wet heat resistance and also a method for measuring heat resistance at known water activities over the whole water activity (aw) range, we measured the heat resistance of these preparations at four different temperatures at each aw interval of 0.1 from aw 0 to aw 0.9. The required temperature dependence of resistance was calculated for each aw increment. The spore forms showed a low resistance at aw values of 0 and 0.7 of 0.9, with a rise in resistance in the range aw 0.1 to 0.5. The temperature dependence values behaved similarly.  相似文献   

5.
D L Popham  S Sengupta    P Setlow 《Applied microbiology》1995,61(10):3633-3638
Spores of a Bacillus subtilis strain with an insertion mutation in the dacB gene, which codes for an enzyme involved in spore cortex biosynthesis, have a higher core water content than wild-type spores. Spores lacking the two major alpha/beta-type small, acid-soluble proteins (SASP) (termed alpha-beta- spores) have the same core water content as do wild-type spores, but alpha-beta- dacB spores had more core water than did dacB spores. The resistance of alpha-beta-, alpha-beta- dacB, dacB, and wild-type spores to dry and moist heat, hydrogen peroxide, and UV radiation has been determined, as has the role of DNA damage in spore killing by moist heat and hydrogen peroxide. These data (i) suggest that core water content has little if any role in spore UV resistance and are consistent with binding of alpha/beta-type SASP to DNA being the major mechanism providing protection to spores from UV radiation; (ii) suggest that binding of alpha/beta-type SASP to DNA is the major mechanism unique to spores providing protection from dry heat; (iii) suggest that spore resistance to moist heat and hydrogen peroxide is affected to a large degree by the core water content, as increased core water resulted in large decreases in spore resistance to these agents; and (iv) indicate that since this decreased resistance (i.e., in dacB spores) is not associated with increased spore killing by DNA damage, spore DNA must normally be extremely well protected against such damage, presumably by the saturation of spore DNA by alpha/beta-type SASP.  相似文献   

6.
The causes of Bacillus spore resistance remain unclear. Many structures including a highly compact envelope, low hydration of the protoplast, high concentrations of Ca-chelated dipicolinic acid, and the presence of small acid-soluble spore proteins seem to contribute to resistance. To evaluate the role of internal protoplast composition and hydration, spores of Bacillus subtilis were produced at different osmotic pressures corresponding to water activities of 0.993 (standard), 0.970, and 0.950, using the two depressors (glycerol or NaCl). Sporulation of Bacillus subtilis was slower and reduced in quantity when the water activity was low, taking 4, 10, and 17 days for 0.993, 0.970, and 0.950 water activity, respectively. The spores produced at lower water activity were smaller and could germinate on agar medium at lower water activity than on standard spores. They were also more sensitive to heat (97 degrees C for 5-60 min) than the standard spores but their resistance to high hydrostatic pressure (350 MPa at 40 degrees C for 20 min to 4 h) was not altered. Our results showed that the water activity of the sporulation medium significantly affects spore properties including size, germination capacity, and resistance to heat but has no role in bacterial spore resistance to high hydrostatic pressure.  相似文献   

7.
Only a single superoxide dismutase (SodA) was detected in Bacillus subtilis, and growing cells of a sodA mutant exhibited paraquat sensitivity as well as a growth defect and reduced survival at an elevated temperature. However, the sodA mutation had no effect on the heat or hydrogen peroxide resistance of wild-type spores or spores lacking the two major DNA protective alpha/beta-type small, acid-soluble, spore proteins (termed alpha(-)beta(-) spores). Spores also had only a single catalase (KatX), as the two catalases found in growing cells (KatA and KatB) were absent. While a katA mutation greatly decreased the hydrogen peroxide resistance of growing cells, as found previously, katA, katB, and katX mutations had no effect on the heat or hydrogen peroxide resistance of wild-type or alpha(-)beta(-) spores. Inactivation of the mrgA gene, which codes for a DNA-binding protein that can protect growing cells against hydrogen peroxide, also had no effect on spore hydrogen peroxide resistance. Inactivation of genes coding for alkyl hydroperoxide reductase, which has been shown to decrease growing cell resistance to alkyl hydroperoxides, had no effect on spore resistance to such compounds or on spore resistance to heat and hydrogen peroxide. However, Western blot analysis showed that at least one alkyl hydroperoxide reductase subunit was present in spores. Together these results indicate that proteins that play a role in the resistance of growing cells to oxidizing agents play no role in spore resistance. A likely reason for this lack of a protective role for spore enzymes is the inactivity of enzymes within the dormant spore.  相似文献   

8.
Germination of mutant spores of Bacillus subtilis unable to degrade their cortex is accompanied by excretion of dipicolinic acid and uptake of some core water. However, compared to wild-type germinated spores in which the cortex has been degraded, the germinated mutant spores accumulated less core water, exhibited greatly reduced enzyme activity in the spore core, synthesized neither ATP nor reduced pyridine or flavin nucleotides, and had significantly higher resistance to heat and UV irradiation. We propose that the germinated spores in which the cortex has not been degraded represent an intermediate stage in spore germination, which we term stage I.  相似文献   

9.
S ummary . Damage induced in bacterial spores by exposure to reduced pressures of the order of 10-8 torr, has been assessed in terms of the differences in the heat resistance of the dried spores. The response of the spores has been assessed as a function of (a), the drying temperature from 0-65°; (b) the duration and level of rehydration; (c) the presence or absence of oxygen during heating. Comparison has also been made between spores dried to a given water level and spores rehydrated to the same water level after prolonged drying. Log survivors/heating time curves for treated spore samples have been constructed and have been shown to exhibit a shoulder at high survival levels and a linear portion below a surviving fraction of 0·1. These curves have been explained on the basis of the shoulder representing the time during which necessary structural changes occur in the spore, before the lethal mechanism responsible for the linear portion of the curve becomes operative. The heat response has been shown to be a function of the temperature of drying, and of the presence of oxygen during heating, the structural change itself being reversible by water.  相似文献   

10.
Spores of Bacillus subtilis with a mutation in spoVF cannot synthesize dipicolinic acid (DPA) and are too unstable to be purified and studied in detail. However, the spores of a strain lacking the three major germinant receptors (termed Deltager3), as well as spoVF, can be isolated, although they spontaneously germinate much more readily than Deltager3 spores. The Deltager3 spoVF spores lack DPA and have higher levels of core water than Deltager3 spores, although sporulation with DPA restores close to normal levels of DPA and core water to Deltager3 spoVF spores. The DPA-less spores have normal cortical and coat layers, as observed with an electron microscope, but their core region appears to be more hydrated than that of spores with DPA. The Deltager3 spoVF spores also contain minimal levels of the processed active form (termed P(41)) of the germination protease, GPR, a finding consistent with the known requirement for DPA and dehydration for GPR autoprocessing. However, any P(41) formed in Deltager3 spoVF spores may be at least transiently active on one of this protease's small acid-soluble spore protein (SASP) substrates, SASP-gamma. Analysis of the resistance of wild-type, Deltager3, and Deltager3 spoVF spores to various agents led to the following conclusions: (i) DPA and core water content play no role in spore resistance to dry heat, dessication, or glutaraldehyde; (ii) an elevated core water content is associated with decreased spore resistance to wet heat, hydrogen peroxide, formaldehyde, and the iodine-based disinfectant Betadine; (iii) the absence of DPA increases spore resistance to UV radiation; and (iv) wild-type spores are more resistant than Deltager3 spores to Betadine and glutaraldehyde. These results are discussed in view of current models of spore resistance and spore germination.  相似文献   

11.
B. PHILIPP AND H. SUCKER. 1992. The heat sterilization of spores of Bacillus stearothermophilus ATCC 7953 in propylene glycol (PG) and PG—water mixtures was investigated. Unusual non-logarithmic survival curves with a marked long shoulder, designated as the lag-time, were observed at the maximum of resistance. When the number of colony-forming units were determined after intervals of incubation, the growth curves of spores previously treated at 121°C in PG or PG-4% water varied considerably. Spores receiving a heat treatment that was longer than the lag-time showed no growth. When the heat treatment was shorter than the lag-time, spores showed a delayed growth phase. When spores received heat treatment that was long but which fell within the lag-time, there was a greater decrease in spore counts before the exponential growth phase began. In PG and PG with low water concentrations, a suppressed release of the specific spore substance calcium dipicolinate was observed during sterilization at 121°C of B. stearothermophilus ATCC 7953 and B. subtilis var. niger ATCC 9372. Calcium dipicolinate release, however, was observed in water.  相似文献   

12.
A major event in the nutrient germination of spores of Bacillus species is release of the spores'' large depot of dipicolinic acid (DPA). This event is preceded by both commitment, in which spores continue through germination even if germinants are removed, and loss of spore heat resistance. The latter event is puzzling, since spore heat resistance is due largely to core water content, which does not change until DPA is released during germination. We now find that for spores of two Bacillus species, the early loss in heat resistance during germination is most likely due to release of committed spores'' DPA at temperatures not lethal for dormant spores. Loss in spore acid resistance during germination also paralleled commitment and was also associated with the release of DPA from committed spores at acid concentrations not lethal for dormant spores. These observations plus previous findings that DPA release during germination is preceded by a significant release of spore core cations suggest that there is a significant change in spore inner membrane permeability at commitment. Presumably, this altered membrane cannot retain DPA during heat or acid treatments innocuous for dormant spores, resulting in DPA-less spores that are rapidly killed.  相似文献   

13.
Five types of dormant Bacillus spores, between and within species, were selected representing a 600-fold range in moist-heat resistance determined as a D100 value. The wet and dry density and the solids and water content of the entire spore and isolated integument of each type were determined directly from gram masses of material, with correction for interstitial water. The ratio between the volume occupied by the protoplast (the structures bounded by the inner pericytoplasm membrane) and the volume occupied by the sporoplast (the structures bounded by the outer pericortex membrane) was calculated from measurements made on electron micrographs of medially thin-sectioned spores. Among the various spore types, an exponential increase in the heat resistance correlated directly with the wet density and inversely with the water content and with the protoplast/sporoplast volume ratio. Altogether with results supported a hypothesis that the extent of heat resistance is based in whole or in part on the extent of dehydration and diminution of the protoplast in the dormant spore, without implications about physiological mechanisms for attaining this state.  相似文献   

14.
A sporulation medium for strict anaerobes   总被引:1,自引:0,他引:1  
The production of spores, and spore position and shape, are taxonomic criteria in a number of genera of bacteria. The heat resistance of spores is also of interest taxonomically and with respect to the survival of bacteria, particularly pathogens, in a number of habitats. The demonstration of spore formation by growth of bacteria in various standard media and under different conditions (e.g. at sub-optimum temperature) is often not easy. Thus, a number of media designed to encourage spore formation and to produce spores with maximum heat resistance have been introduced, for instance for Clostridium perfringens (Ellner 1956; Angelotti et al. 1962; Kim et al. 1967; Duncan & Strong 1968) and Sporolactobacillus inulinus (Kitahara & Lai 1967).  相似文献   

15.
Clostridium perfringens food poisoning is caused mainly by enterotoxigenic type A isolates that typically possess high spore heat resistance. Previous studies have shown that alpha/beta-type small, acid-soluble proteins (SASP) play a major role in the resistance of Bacillus subtilis and C. perfringens spores to moist heat, UV radiation, and some chemicals. Additional major factors in B. subtilis spore resistance are the spore's core water content and cortex peptidoglycan (PG) structure, with the latter properties modulated by the spm and dacB gene products and the sporulation temperature. In the current work, we have shown that the spm and dacB genes are expressed only during C. perfringens sporulation and have examined the effects of spm and dacB mutations and sporulation temperature on spore core water content and spore resistance to moist heat, UV radiation, and a number of chemicals. The results of these analyses indicate that for C. perfringens SM101 (i) core water content and, probably, cortex PG structure have little if any role in spore resistance to UV and formaldehyde, presumably because these spores' DNA is saturated with alpha/beta-type SASP; (ii) spore resistance to moist heat and nitrous acid is determined to a large extent by core water content and, probably, cortex structure; (iii) core water content and cortex PG cross-linking play little or no role in spore resistance to hydrogen peroxide; (iv) spore core water content decreases with higher sporulation temperatures, resulting in spores that are more resistant to moist heat; and (v) factors in addition to SpmAB, DacB, and sporulation temperature play roles in determining spore core water content and thus, spore resistance to moist heat.  相似文献   

16.
The heat resistance and ultrastructural features of spore suspensions prepared from Clostridium thermocellum LQRI, Clostridium thermosulfurogenes 4B, and Clostridium thermohydrosulfuricum 39E were compared as a function of decimal reduction time. The decimal reduction times at 121 degrees C for strains LQRI, 4B, and 39E were 0.5, 2.5, and 11 min. The higher degree of spore heat resistance was associated with a spore architecture displaying a thicker cortex layer. Heat resistance of these spores was proportional to the ratio of spore cortex volume to cytoplasmic volume. These ratios for spores of strains LQRI, 4B, and 39E were 1.4, 1.6, and 6.6, respectively. The extreme heat resistance and autoclavable nature of C. thermohydrosulfuricum spores under routine sterilization procedures is suggested as a common cause of laboratory contamination with pure cultures of thermophilic, saccharide-fermenting anaerobes.  相似文献   

17.
AIMS: The aim of this work was to compare the chemical structure of the spore cortex of a range of species, and to determine any correlation between cortex structure and spore resistance properties. METHODS AND RESULTS: The fine chemical structure of the cortex of Bacillus subtilis, Bacillus megaterium, Bacillus cereus and Clostridium botulinum was examined by muropeptide analysis using reverse phase HPLC. There is a conserved basic structure between peptidoglycan of these species, with the only difference being the level of de-N-acetylation of an amino sugar. In order to determine if an alteration in cortex structure correlates with heat resistance properties, the peptidoglycan structure and properties of B. subtilis spores prepared under different conditions were compared. Peptidoglycan from spores prepared in Nutrient Broth (NB) showed reduction in single L-alanine substituted muramic acid to only 13.9% compared with 20.6% in CCY-grown spores. NB-prepared spores are also unstable, with 161-fold less heat resistance (60 min, 85 degrees C) and 43 times less Mn(2+) content than CCY-grown spores. Addition of MnCl(2) to NB led to a peptidoglycan profile similar to CCY-grown spores, sevenfold more heat resistance (60 min, 85 degrees C) and an 86-fold increase in Mn(2+) content. Addition of CCY salts to NB led all parameters to be comparable with CCY-grown spore levels. CONCLUSION: It has been shown that peptidoglycan structure is conserved in four spore-forming bacteria. Also, spore heat resistance is multifactorial and cannot be accounted for by any single parameter. SIGNIFICANCE AND IMPACT OF THE STUDY: Endospores made by diverse species most likely have common mechanisms of heat resistance. However, the molecular basis for their resistance remains elusive.  相似文献   

18.
Li J  McClane BA 《PLoS pathogens》2008,4(5):e1000056
Clostridium perfringens is a major cause of food poisoning (FP) in developed countries. C. perfringens isolates usually induce the gastrointestinal symptoms of this FP by producing an enterotoxin that is encoded by a chromosomal (cpe) gene. Those typical FP strains also produce spores that are extremely resistant to food preservation approaches such as heating and chemical preservatives. This resistance favors their survival and subsequent germination in improperly cooked, prepared, or stored foods. The current study identified a novel alpha/beta-type small acid soluble protein, now named Ssp4, and showed that sporulating cultures of FP isolates producing resistant spores consistently express a variant Ssp4 with an Asp substitution at residue 36. In contrast, Gly was detected at Ssp4 residue 36 in C. perfringens strains producing sensitive spores. Studies with isogenic mutants and complementing strains demonstrated the importance of the Asp 36 Ssp4 variant for the exceptional heat and sodium nitrite resistance of spores made by most FP strains carrying a chromosomal cpe gene. Electrophoretic mobility shift assays and DNA binding studies showed that Ssp4 variants with an Asp at residue 36 bind more efficiently and tightly to DNA than do Ssp4 variants with Gly at residue 36. Besides suggesting one possible mechanistic explanation for the highly resistant spore phenotype of most FP strains carrying a chromosomal cpe gene, these findings may facilitate eventual development of targeted strategies to increase killing of the resistant spores in foods. They also provide the first indication that SASP variants can be important contributors to intra-species (and perhaps inter-species) variations in bacterial spore resistance phenotypes. Finally, Ssp4 may contribute to spore resistance properties throughout the genus Clostridium since ssp4 genes also exist in the genomes of other clostridial species.  相似文献   

19.
Laboratory-prepared spore disks were stored for 96 weeks at 22 degrees C with 50% relative humidity (RH) and at 4 degrees C with less than 1% RH. At the same time commercial spore strips were stored for 64 weeks at 22 degrees C with 50% RH. The spore count per unit and the heat resistance were measured at the beginning of the experiment and after 16, 32, 48, 64, 80, and 96 weeks of storage. The laboratory-prepared spore disks stored at 4 degrees C with less than 1% RH showed less change in numbers of spores per disks and decrease in the survival time than did the disks stored at 22 degrees C with 50% RH. Both the laboratory-prepared spore disks and the commercial spore strips stored at 22 degrees C with 50% RH decreased in survival times with increased storage time. The relative change in the survival times with storage was less for the commercial spore strips than for the laboratory-prepared spore disks.  相似文献   

20.
AIM: To determine the effect of selected physical and chemical treatments on the survival of 'blown pack'-causing Clostridium estertheticum. METHODS AND RESULTS: The study investigated the survival of the spores of 'blown pack'-causing C. estertheticum following the four treatments, which include: heat alone, ultrasound followed by heat treatment, peroxyacetic acid (POAA)-based sanitizer followed by heat treatment and POAA sanitizer followed by heat treatment in the presence of 20% animal fat. No C. estertheticum survivors were recovered in spore preparations that underwent either of the two treatments with the sanitizer, resulting in the inactivation of 4 to 5 log CFU ml(-1) of spores. Similarly, no survivors were detected in spore preparations that were treated with the sanitizer for 5 min at room temperature without further heat treatment. When using heat alone and ultrasound followed by heat treatment, complete spore inactivation did not occur for spores heated at times and temperature combinations other than 240 s at 100 degrees C. CONCLUSIONS: POAA sanitizer used with or without heat is capable of in vitro inactivation of at least 4 log CFU ml(-1)C. estertheticum spores. SIGNIFICANCE AND IMPACT OF THE STUDY: The data generated in the study provide background information for controlling 'blown pack'-causing clostridia on dressed carcasses and in meat plant environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号