首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gastric cancer (GC) is a lethal disease, and among its variety of etiological factors, Helicobacter pylori (H. pylori) infection is the strongest risk factor. However, the genetic and molecular mechanisms underlying H. pylori-related GC need further elucidation. We investigated the competing endogenous RNA (ceRNA) network differences between H. pylori (+) and H. pylori (−) GC. The long noncoding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) expression data from 32 adjacent noncancerous samples and 18 H. pylori (+) and 141 H. pylori (−) stomach adenocarcinoma samples were downloaded from the TCGA database. After construction of lncRNA–miRNA–mRNA ceRNA networks of H. pylori (+) and H. pylori (−) GC, Panther and Kobas databases were used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, survival analysis was used to discover the key genes. In H. pylori (+) GC, we identified a total of 1,419 lncRNAs, 82 miRNAs, and 2,501 mRNAs with differentially expressed profiles. In H. pylori (−) GC, 2,225 lncRNAs, 130 miRNAs, and 3,146 mRNAs were differentially expressed. Furthermore, three unique pathways (cytokine–cytokine receptor interaction, HIF-1 signaling pathway, and Wnt signaling pathway) were enriched in H. pylori (+) GC. According to the overall survival analysis, three lncRNAs (AP002478.1, LINC00111, and LINC00313) and two mRNAs (MYB and COL1A1) functioned as prognostic biomarkers for patients with H. pylori (+) GC. In conclusion, our study has identified the differences in ceRNA regulatory networks between H. pylori (+) and H. pylori (−) GC and provides a rich candidate reservoir for future studies.  相似文献   

2.
Gastric cancer (GC) is one of the most fatal cancers in the world. Thousands of biomarkers have been explored that might be related to survival and prognosis via database mining. However, the prediction effect of single gene biomarkers is not specific enough. Increasing evidence suggests that gene signatures are emerging as a possible better alternative. We aimed to develop a novel gene signature to improve the prognosis prediction of GC. Using the messenger RNA (mRNA)-mining approach, we performed mRNA expression profiling in a large GC cohort (n = 375) from The Cancer Genome Atlas (TCGA) database. Gene Set Enrichment Analysis (GSEA) was performed, and we recovered genes related to the G2/M checkpoint, which we identified with a Cox proportional regression model. We identified a set of five genes (MARCKS, CCNF, MAPK14, INCENP, and CHAF1A), which were significantly associated with overall survival (OS) in the test series. Based on this five-gene signature, the test series patients could be classified into high-risk or low-risk subgroups. Multivariate Cox regression analysis indicated that the prognostic power of this five-gene signature was independent of clinical features. In conclusion, we developed a five-gene signature related to the cell cycle that can predict survival for GC. Our findings provide novel insight that is useful for understanding cell cycle mechanisms and for identifying patients with GC with poor prognoses.  相似文献   

3.
Shin CM  Kim N  Jung Y  Park JH  Kang GH  Park WY  Kim JS  Jung HC  Song IS 《Helicobacter》2011,16(3):179-188
Background and Aims: To determine genome‐wide DNA methylation profiles induced by Helicobacter pylori (H. pylori) infection and to identify methylation markers in H. pylori‐induced gastric carcinogenesis. Methods: Gastric mucosae obtained from controls (n = 20) and patients with gastric cancer (n = 28) were included. A wide panel of CpG sites in cancer‐related genes (1505 CpG sites in 807 genes) was analyzed using Illumina bead array technology. Validation of the results of Illumina bead array technique was performed using methylation‐specific PCR method for four genes (MOS, DCC, CRK, and PTPN6). Results: The Illumina bead array showed that a total of 359 CpG sites (269 genes) were identified as differentially methylated by H. pylori infection (p < .0001). The correlation between methylation‐specific PCR and bead array analysis was significant (p < .0001, Spearman coefficient = 0.5054). Methylation profiles in noncancerous gastric mucosae of the patients with gastric cancer showed quite distinct patterns according to the presence or absence of the current H. pylori infection; however, 10 CpG sites were identified to be hypermethylated and three hypomethylated in association with the presence of gastric cancer regardless of H. pylori infection (p < .01). Conclusions: Genome‐wide methylation profiles showed a number of genes differentially methylated by H. pylori infection. Methylation profiles in noncancerous gastric mucosae from the patients with gastric cancer can be affected by H. pylori‐induced gastritis. Differentially methylated CpG sites in this study needs to be validated in a larger population using quantitative methylation‐specific PCR method.  相似文献   

4.
5.
6.
7.
Epigenetic disorder mechanisms are one of the causes of cancer. The most important of these changes is the DNA methylation, which leads to the spread of Helicobacter pylori and inflammatory processes followed by induction of DNA methylation disorder. Mutations and epigenetic changes are the two main agents of neoplasia. Epithelial cells infection by H. pylori associated with activating several intracellular pathways including: MAPK, NF-κB, Wnt/β-catenin, and PI3K are affects a variety of cells and caused to an increase in the production of inflammatory cytokines, changes in apoptosis, proliferation, differentiation, and ultimately leads to the transformation of epithelial cells into oncogenic. The arose of free radicals impose the DNA cytosine methylation, and NO can increase the activity of DNA methyltransferase. H. pylori infection causes an environment that mediates inflammation and signaling pathways that probably caused to stomach tumorigenicity. The main processes that change by decreasing or increasing the expression of various microRNAs expressions include immune responses, apoptosis, cell cycle, and autophagy. In this review will be describe a probably H. pylori roles in infection and mechanisms that have contribution in epigenetic changes in the promoter of genes.  相似文献   

8.
Background. Helicobacter pylori infection is usually acquired during childhood and is a known risk factor for the development of gastric malignancies in adulthood. It has been reported that early age at first infection may determine a neoplastic outcome in adults. The purpose of this study was to determine the prevalence of Helicobacter pylori infection in children residing in areas with high (Pasto) and low risk (Tumaco) of gastric cancer in Colombia to evaluate whether differences in the age of acquisition of H. pylori infection were present in the two populations. Materials and Methods. The study sample was based on a census taken in 1999. Using the 13C‐urea breath test, we compared the prevalence of H. pylori infection among children aged 1–6 years. Results. Among 345 children in Pasto, 206 (59.7%) were H. pylori‐positive, compared with 188 (58.6%) among 321 children in Tumaco. The two populations share a common pattern of very early age at infection and marked increase in prevalence during the first 4 years of life. No differences in any one year were observed when comparing the two groups. Conclusions. The prevalence of infection was similarly high and increased with age in both populations. In these populations the age of acquisition of H. pylori after 1 year of age does not appear to be a primary factor responsible for the differences in the rates of gastric cancer incidence in adults. Previous findings in adults showed lower prevalence of the most virulent genotypes in Tumaco compared to Pasto, and bacterial virulence may play a key role in determining cancer outcome.  相似文献   

9.
Helicobacter pylori-induced inflammation significantly increases the risk of gastric cancer. To investigate the role of H. pylori infection in gastric epithelial cell carcinogenesis, flow cytometry was used to analyze the apoptosis of gastric epithelial cells infected by H. pylori. Next, LTQ MS mass spectrometry (MS) was applied to identify protein changes in gastric epithelial cells infected with H. pylori, and then bioinformatics was adopted to analyze the cellular localization and biological function of differential proteins. LTQ MS/MS successfully identified identified 22 differential proteins successfully, including 20 host-cell proteins and two H. pylori bacterial proteins. Also, human proteins were located in all areas of cells and involved in various cell biological functions. The oncogene proteins p53, p16, and C-erbB-2 proteins in H. pylori-infected RGM-1 cells were remarkably increased from the analysis by Western blot analysis. H. pylori infection of gastric epithelial cells leads to changes in various protein components in the cell, and enhances the expression of oncogene proteins, thereby increasing the possibility of possibility of carcinogenesis of H. pylori infection.  相似文献   

10.
Helicobacter pylori and gastric malignancies   总被引:4,自引:0,他引:4  
  相似文献   

11.
Helicobacter pylori (H. pylori) is a Gram-negative bacterium and causative agent of gastric cancer. H. pylori induce defective autophagy or inhibit it by means of CagA and vacuolating cytotoxin A (VacA) toxins leading to the gastric cancer induction. Impaired or defective autophagy leads to the accumulation of cytotoxic materials, such as ROS and P62 that lead to increased mutations in the DNA, genome instability, and risk of cancer formation. H. pylori CagA may inhibit autophagy through the c-Met-PI3k/Akt-mTOR signaling pathway. However, VacA induces autophagy by some signaling pathways. In the gastric epithelial cells, VacA is a necessary and sufficient factor for the creation of autophagy. While CagA is a negative regulator of this phenomenon, the elimination of this gene from H. pylori has increased autophagy and the production of inflammatory cytokines is reduced. In gastrointestinal cancers, some of the microRNAs (miRNAs) act as tumor suppressors and some other are oncogenes by regulating various genes expression. H. pylori can also modify autophagy through a mechanism that includes the function of miRNAs. In autophagy, oncogenic miRNAs inhibit activation of some tumor suppressor signaling pathways (e.g., ULK1 complex, Beclin-1 function, and Atg4 messaging), whereas tumor suppressor miRNAs can block the activation of oncogenic signaling pathways. For instance, Beclin-1 is negatively regulated by miRNA-376b (oncogenic miRNA) and miRNA-30a (tumor suppressor miRNA). Similarly, Atg4 by miRNA-376b (oncogenic miRNA) and miRNA-101 (tumor suppressor miRNA). So, this apparent paradox can be explained as that both Beclin-1 and Atg4 play different roles in a particular cell or tissue.  相似文献   

12.
We investigated the effect of H. pylori infection on cell proliferation of gastric mucosa using immunostaining for H. pylori or Ki67. H. pylori cells attached to surface mucous cells covering luminal surface and the upper part of gastric foveolae, and up-regulated the proliferative activity of gastric epithelial cells without adhering to the proliferating epithelial cells.  相似文献   

13.
BACKGROUND: Helicobacter pylori infection occurs mostly during childhood, but few studies on this age group have addressed the innate immune and the proliferative response to this infection. Mexico has a high H. pylori prevalence in children, but a low risk of gastric cancer. The aim of this work was to study the cellular responses of the gastric mucosa to this infection in Mexican children. METHODS: Antral and corpus gastric biopsies were obtained from 44 H. pylori-infected children (mean age 12 +/- 3.2 years) and 44 uninfected children (mean age 10 +/- 3 years). Mucosal cellular responses were studied by immunohistochemistry, using anti-Ki67 antibodies for proliferation studies, antihuman tryptase for mast cells, and antihuman CD68 for macrophages. T and B lymphocytes were stained with a commercial integrated system. The intensity of cellular responses was estimated histologically using the software KS300. RESULTS: Epithelium proliferation and infiltration of macrophages and T and B lymphocytes were significantly higher in H. pylori-infected than in uninfected children. A balanced increase of CD4, CD8, and CD20 lymphocytes was observed in infected children. However, activated mast cells were decreased, and infiltration of neutrophil and mononuclear cells was low. Epithelial proliferation was associated with polymorphonuclear infiltration but not with infiltration of macrophages or lymphocytes. Inflammation and proliferation was higher in CagA (+)-infected children. CONCLUSIONS: Mexican children respond to H. pylori infection with a low inflammatory response, a balanced increase of T and B lymphocytes, and a high regenerative activity.  相似文献   

14.
Helicobacter pylori has been proposed as a causative agent of gastric cancer. The aim of this study was to define serum antibodies response against different H. pylori antigens in patients with gastric cancer. Serum samples were collected from 115 Lithuanian patients with non-cardia gastric cancer and 110 age- and sex-matched controls without cancer. Heat-stable, low-molecular-mass, and outer membrane proteins were used as antigens to analyze serum IgG antibody response against H. pylori by enzyme-linked immunosorbent assay. Seroprevalence of H. pylori using low-molecular-mass antigen was significantly higher in gastric cancer patients, compared to controls (77% versus 57%, p<0.05). Significant differences in the prevalence of H. pylori infection between gastric cancer patients and controls were found in females using all three studied antigens: heat-stable (98% versus 84%, p<0.05), low-molecular-mass (88% versus 48%, p<0.05) and outer membrane proteins (78% versus 57%, p<0.05). In males, no significant differences were revealed between gastric cancer patients and controls. There may be other cofactors in addition to H. pylori that are important for the development of gastric cancer. H. pylori seems, however, to be a more important for development of gastric cancer in females than in males or males may have more confounding risk factors for gastric cancer than females.  相似文献   

15.
16.
Background. Two types of mucous cell are present in gastric mucosa: surface mucous cells (SMCs) and gland mucous cells (GMCs), which consist of cardiac gland cells, mucous neck cells, and pyloric gland cells. We have previously reported that the patterns of glycosylation of SMC mucins are reversibly altered by Helicobacter pylori infection. In this study, we evaluated the effects of H. pylori infection on the expression of GMC mucins in pyloric gland cells. Methods. Gastric biopsy specimens from the antrums of 30 H. pylori‐infected patients before and after eradication of H. pylori and 10 normal uninfected volunteers were examined by immunostaining for MUC6 (a core protein of GMC mucins), α1,4‐N‐acetyl‐glucosaminyl transferase (α4GnT) (the glycosyltransferase which forms GlcNAcα1‐4Galβ‐R), and GlcNAcα1‐4Galβ‐R (a GMC mucin‐specific glycan). Results. MUC6, α4GnT, and HIK1083‐reactive glycan were expressed in the cytoplasm, supranuclear region, and secretory granules in pyloric gland cells, respectively. The immunoreactivity of MUC6 and α4GnT, but not of GlcNAcα1‐4Galβ‐R, in the pyloric gland increased in H. pylori‐associated gastritis, and after the eradication of H. pylori, the increased expression of MUC6 and α4GnT in the gastric mucosa of H. pylori‐infected patients decreased to almost normal levels. This up‐regulation was correlated with the degree of inflammation. Conclusions. In addition to the synthesis of GMC mucins increasing reversibly, their metabolism or release may also increase reversibly in H. pylori‐associated gastritis. The up‐regulation of the expression of gastric GMC mucins may be involved in defense against H. pylori infection in the gastric surface mucous gel layer and on the gastric mucosa.  相似文献   

17.
微小核糖核酸(microRNA,miRNA)是一种由内源基因编码长度约为22个核苷酸的非编码RNA,其能抑制靶基因蛋白质表达,有多种生物学功能。越来越多的研究表明,miRNA在多种肿瘤中异常表达,参与肿瘤发生、发展过程。幽门螺杆菌(Helicobacter pylori,Hp)作为胃癌的主要致病因素,可通过调节miRNA的表达,在胃癌中起促进或抑制作用。现就Hp相关miRNA在胃癌中的作用作一概述。  相似文献   

18.
19.
目的:探讨肝癌与H.pylori感染的相关性.方法:采用金标免疫斑点法和酶免疫检测法(EIA)分别检测33例肝癌患者及169例普通成人Hp-Ab和CagA-Hp-IgG抗体.结果:肝癌组Hp-Ab和CagA -Hp-IgG检出率分别为78.8%和45.5%,而普通成人组分别为55.0%和27.2%,经x2检验,P<0.05,差异均有显著性.结论:肝癌患者由于整体免疫力低下,易受H.pylori感染.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号