首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
上皮间充质转化是一种可参与调控胚胎发育、损伤愈合的复杂过程,并在肿瘤形成、发展和转移过程中发挥重要作用。多种诱导因素及转录因子可诱导、促进上皮细胞发生间充质样改变。随着肿瘤与细菌感染相关研究成为热点,细菌与上皮间充质转化的相关研究报道亦逐渐增多。细菌或病毒等病原微生物感染宿主细胞可通过多种不同机制上调参与上皮间充质转化的转录因子表达,减少上皮性标志物Ecadherin、细胞角蛋白等的表达,增强间充质性标志物Vimentin、N-cadherin等的表达,促进细胞迁移和侵袭,诱导上皮间充质转化的发生发展。本文对细菌和病毒等病原微生物诱导上皮间充质转化的相关研究进展作一综述。  相似文献   

4.
5.
Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.  相似文献   

6.
Mouse mammary epithelial cells undergo transdifferentiation via epithelial–mesenchymal transition (EMT) upon treatment with matrix metalloproteinase-3 (MMP3). In rigid microenvironments, MMP3 upregulates expression of Rac1b, which translocates to the cell membrane to promote induction of reactive oxygen species and EMT. Here we examine the role of the extracellular matrix (ECM) in this process. Our data show that the basement membrane protein laminin suppresses the EMT response in MMP3-treated cells, whereas fibronectin promotes EMT. These ECM proteins regulate EMT via interactions with their specific integrin receptors. α6-integrin sequesters Rac1b from the membrane and is required for inhibition of EMT by laminin. In contrast, α5-integrin maintains Rac1b at the membrane and is required for the promotion of EMT by fibronectin. Understanding the regulatory role of the ECM will provide insight into mechanisms underlying normal and pathological development of the mammary gland.  相似文献   

7.
MicroRNAs (miRNAs) are a class of small highly conserved RNAs that provide widespread expressional control through the translational repression of mRNA. MiRNAs have fundamental roles in the regulation of intracellular processes, and their importance during malignant transformation and metastasis is becoming increasingly well recognized. An important event in the metastatic cascade is epithelial to mesenchymal transition (EMT), a reversible phenotypic switch over, which endows malignant epithelial cells with the capacity to break free from one another and invade the surrounding stroma. Our understanding of EMT has been significantly improved by the characterization of miRNAs that influence the signalling pathways and downstream events that define EMT on a molecular level. Here, we detail the role of miRNAs in EMT, and in doing so demonstrate their importance in the early stages of the metastatic cascade; we discuss a significant body of data that suggest new opportunities for drug development, and we highlight critical knowledge gaps that remain to be addressed.  相似文献   

8.
The ancestors of modern Metazoa were constructed in large part by the foldings and distortions of two-dimensional sheets of epithelial cells. This changed approximately 600 million years ago with the evolution of mesenchymal cells. These cells arise as the result of epithelial cell delamination through a reprogramming process called an epithelial to mesenchymal transition (EMT) [Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 2003;120:1351-83; Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131-42]. Because mesenchymal cells are free to migrate through the body cavity, the evolution of the mesenchyme opened up new avenues for morphological plasticity, as cells evolved the ability to take up new positions within the embryo and to participate in novel cell-cell interactions; forming new types of internal tissues and organs such as muscle and bone [Thiery JP, Sleeman, JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131-42; Hay ED, Zuk A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 1995;26:678-90]. After migrating to a suitable site, mesenchymal cells coalesce and re-polarize to form secondary epithelia, in a so-called mesenchymal-epithelial transition (MET). Such switches between mesenchymal and epithelial states are a frequent feature of Metazoan gastrulation [Hay ED, Zuk A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 1995;26:678-90] and the neural crest lineage [Duband JL, Monier F, Delannet M, Newgreen D. Epitheliu-mmesenchyme transition during neural crest development. Acta Anat 1995;154:63-78]. Significantly, however, when hijacked during the development of cancer, the ability of cells to undergo EMT, to leave the primary tumor and to undergo MET at secondary sites can have devastating consequences on the organism, allowing tumor cells derived from epithelia to invade surrounding tissues and spread through the host [Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131-42; Hay ED, Zuk A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 1995;26:678-90]. Thus, the molecular and cellular mechanisms underpinning EMT are both an essential feature of Metazoan development and an important area of biomedical research. In this review, we discuss the common molecular and cellular mechanisms involved in EMT in both cases.  相似文献   

9.
Cell fate conversion is considered as the changing of one type of cells to another type including somatic cell reprogramming (de-differentiation), differentiation, and trans-differentiation. Epithelial and mesenchymal cells are two major types of cells and the transitions between these two cell states as epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) have been observed during multiple cell fate conversions including embryonic development, tumor progression and somatic cell reprogramming. In addition, MET and sequential EMT-MET during the generation of induced pluripotent stem cells (iPSC) from fibroblasts have been reported recently. Such observation is consistent with multiple rounds of sequential EMT-MET during embryonic development which could be considered as a reversed process of reprogramming at least partially. Therefore in current review, we briefly discussed the potential roles played by EMT, MET, or even sequential EMT-MET during different kinds of cell fate conversions. We also provided some preliminary hypotheses on the mechanisms that connect cell state transitions and cell fate conversions based on results collected from cell cycle, epigenetic regulation, and stemness acquisition.  相似文献   

10.
11.
Epithelial to mesenchymal transition (EMT) is a mechanism by which eosinophils can induce airway remodeling. Montelukast, an antagonist of the cysteinyl leukotriene receptor, can suppress airway remodeling in asthma. The purpose of this study was to evaluate whether montelukast can ameliorate airway remodeling by blocking EMT induced by eosinophils. EMT induced was assessed using a co-culture system of human bronchial epithelial cells and human eosinophils or the eosinophilic leukemia cell lines, Eol-1. Montelukast inhibited co-culture associated morphological changes of BEAS-2b cells, decreased the expression of vimentin and collagen I, and increased the expression of E-cadherin. Montelukast mitigated the rise of TGF-β1 production and Smad3 phosphorylation. Co-culture of human eosinophils with BEAS-2B cells significantly enhanced the production of CysLTs compared with BEAS-2B cells or eosinophils alone. The increase of CysLTs was abolished by montelukast pre-treatment. Montelukast had similar effects when co-culture system of Eol-1 and BEAS-2B was used. This study showed that montelukast suppresses eosinophils-induced EMT of airway epithelial cells. This finding may explain the mechanism of montelukast-mediated amelioration of airway remodeling in bronchial asthma.  相似文献   

12.
13.

Background

Mesenchymal-epithelial interactions play an important role in the physiology and pathology of epithelial tissues. Mesenchymal cells either associate with epithelium basement membrane [pericytes and perivascular monocyte-derived cells (MDC)] or reside within epithelium (MDC and T cells). Although intraepithelial mesenchymal cells were suggested to contribute to the epithelium physiology, their association with particular steps in differentiation of epithelial cells, interactions among themselves, and their fate remain unclear. We studied epitopes of mesenchymal cells and their products (immunoglobulins) in stratified epithelium of uterine ectocervix, which is one of the prototypes of complete cellular differentiation from stem into the aged cells.

Results

Perivascular CD14 primitive MDC associated with basal (stem) epithelial cells. Thy-1 pericytes of microvasculature secreted intercellular vesicles, which associated with Ki67 postmitotic epithelial cells expressing MHC class I. Intraepithelial T cells showed an association with veiled type MDC [dendritic cell (DC) precursors] among parabasal cells, and exhibited fragmentation after entering intermediate (mature) epithelial layers. Mature DC secreted CD68 and exhibited fragmentation after reaching mid intermediate layers. Binding of IgM was detected at the top of each layer: in the upper parabasal, upper intermediate, and most surface epithelial cells. IgG was confined to the entire superficial layer.

Conclusions

These data suggest that the phylogenetically and ontogenetically developed hierarchy of mesenchymal cells (MDC, pericytes, T cells) and immunoglobulins (IgM, IgG) accompanies differentiation of epithelial cells from immature into the mature and aged phenotype. Further studies of an involvement of mesenchymal cells in the regulation of tissue homeostasis may bring novel approaches to the prevention and therapy of tissue dysfunctions characterized by permanent tissue immaturity (muscular dystrophy) or accelerated aging (degenerative diseases).  相似文献   

14.
间质表皮转化因子(Mesenchymal to epithelial transition factor,MET)蛋白作为一种受体酪氨酸激酶,通常存在于上皮细胞中,被HGF等配体激活后,能够参与调控细胞的增殖、凋亡、迁移侵袭和细胞形态等多种生物学功能。随着研究的深入,MET已被证实在多种恶性肿瘤中异常表达或基因扩增,其与肿瘤患者的预后有着密切的关系。因此,针对MET的抑制剂研究发展比较迅速,且其良好的抗肿瘤效果也得到了证实。本文结合目前本实验室的研究,对MET的结构、功能及其抑制剂研究的现状等进行了综述,为今后的研究者提供一个阶段性的数据资料。  相似文献   

15.
Epithelial mesenchymal transition (EMT) in development, tissue repair and carcinogenesis involves cellular plasticity with varying degrees of epithelial and mesenchymal properties. Several recent studies have focused on EMT phenotypic dynamism; however, information on cellular interaction in the context of EMT is inadequate. In our previous study, we investigated EMT phenotypic plasticity and anticipated it as a population driven interactive process. Present study has characterized cellular connectivity as a representative of interactivity during EMT in epithelial normal and cancer cell. It has also explored dynamism of connectivity and phenotype employing Markov model. Further, plasticity was substantiated with cell surface microvilli and molecular marker. The study unveiled interplay between phenotype and connectivity too. Findings have revealed that intercellular connectivity fueled EMT plasticity and its dynamism was more prominent in cancer population. However, normal cells are more vibrant in transition and phenotypic plasticity. We have proposed connectivity plasticity as a hallmark of EMT and needs to be studied in depth. Present study also paves the way in translating in vitro EMT findings in histopathological practices.  相似文献   

16.
Meng X  Ezzati P  Wilkins JA 《PloS one》2011,6(4):e18715
Epithelial mesenchymal transition (EMT) is characterized by the development of mesenchymal properties such as a fibroblast-like morphology with altered cytoskeletal organization and enhanced migratory potential. We report that the expression of podocalyxin (PODXL), a member of the CD34 family, is markedly increased during TGF-β induced EMT. PODXL is enriched on the leading edges of migrating A549 cells. Silencing of podocalyxin expression reduced cell ruffle formation, spreading, migration and affected the expression patterns of several proteins that normally change during EMT (e.g., vimentin, E-cadherin). Cytoskeleton assembly in EMT was also found to be dependent on the production of podocalyin. Compositional analysis of podocalyxin containing immunoprecipitates revealed that collagen type 1 was consistently associated with these isolates. Collagen type 1 was also found to co-localize with podocalyxin on the leading edges of migrating cells. The interactions with collagen may be a critical aspect of podocalyxin function. Podocalyxin is an important regulator of the EMT like process as it regulates the loss of epithelial features and the acquisition of a motile phenotype.  相似文献   

17.
During carcinoma progression, tumor cells often undergo changes similar (but not identical) to epithelialmesenchymal transitions in embryonic development. In this study, we demonstrate that experimental stimulation of hyaluronan synthesis in normal epithelial cells is sufficient to induce mesenchymal and transformed characteristics. Using recombinant adenoviral expression of hyaluronan synthase-2, we show that increased hyaluronan production promotes anchorage-independent growth and invasiveness, induces gelatinase production, and stimulates phosphoinositide 3-kinase/Akt pathway activity in phenotypically normal Madin-Darby canine kidney and MCF-10A human mammary epithelial cells. Cells infected with hyaluronan synthase-2 adenovirus also acquired mesenchymal characteristics, including up-regulation of vimentin, dispersion of cytokeratin, and loss of organized adhesion proteins at intercellular boundaries. Furthermore, we show that the transforming effects of two well described agents, hepatocyte growth factor (HGF) and beta-catenin, are dependent on hyaluronan-cell interactions. Perturbation of endogenous hyaluronan polymer interactions by treatment with hyaluronan oligomers is shown here to reverse the transforming effects of HGF and beta-catenin in Madin-Darby canine kidney and MCF-10A human mammary epithelial cells. Also, HGF and beta-catenin induced assembly of hyaluronan-dependent pericellular matrices similar to those surrounding mesenchymal cells. Thus, increased expression of hyaluronan is sufficient to induce epithelial-mesenchymal transition and acquisition of transformed properties in phenotypically normal epithelial cells.  相似文献   

18.
Tubular cell epithelial-mesenchymal transition (EMT) is a fundamental contributor to renal fibrosis. The aim of this study was to investigate the activity of different matrix metalloproteinases by immunohistochemistry and gel-zymography in a model of chronic canine kidney disease. Immunohistochemistry for antibodies against MMP-9, MMP-2, MMP-13, MMP-14 and TIMP-2 was performed on 28 renal biopsy specimens. Selected cases were chosen for gelatin zymography. In moderate and severe tubulo-interstitial damage, increased expression of MMP-2 was noted. A peculiar staining pattern for MMP-2 in variable-sized vesicles, corresponding to the area of basement membrane splitting, was observed. The immunoexpression of MMP-9 and TIMP-2 was reduced in the same cases, compared to control dogs. The splitting of the membrane suggests an active role of this gelatinase in the disruption of type-IV collagen, the main basement membrane component, confirmed by MMP2 gelatinolytic activity by gel-zymography. These data could provide the basis for clinical trials examining the potential benefits of selective MMP-2 inhibitors in dogs with chronic kidney disease.  相似文献   

19.
20.
The transmembrane glycoprotein epithelial cell adhesion molecule (EpCAM) is overexpressed in most epithelial cancers including breast cancer, where it plays an important role in cancer progression. Previous study has demonstrated that knockdown of EpCAM inhibits breast cancer cell growth and metastasis via inhibition of the Ras/Raf/ERK signaling pathway and matrix metallopeptidase-9 (MMP-9). Although glycosylation is believed to be associated with the function of EpCAM, the contribution of N-glycosylation to this function remains unclear. We constructed the N-glycosylation mutation plasmid of EpCAM and used it to treat breast cancer cells. Loss of N-glycosylation at all three sites EpCAM had no effect on its level of expression or membrane localization. However, mutation at glycosylation sites significantly reduced the ability of EpCAM to promote epithelial to mesenchymal transition in breast cancer. N-glycosylation mutation of EpCAM led to decrease phosphorylation of Raf, ERK, and Akt, and inhibited the Ras/Raf/ERK and PI3K/Akt signaling pathways. Furthermore, we demonstrated that N-glycosylation mutation of EpCAM-mediated invasion and metastasis of breast carcinoma cells required the downregulation of MMP-9 via inhibition of these two signaling pathways. Our results identified the characteristics and function of EpCAM glycosylation. These data could illuminate molecular regulation of EpCAM by glycosylation and promote our understanding of the application of glycosylated EpCAM as a target for breast cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号