首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
3.
Long noncoding RNAs (lncRNAs) are important regulators of the biological functions and underlying molecular mechanisms of colorectal cancer (CRC). However, the role of the lncRNA ZEB1-AS1 in CRC is not thoroughly understood. In this study, we found that ZEB1-AS1 was markedly upregulated in CRC. ZEB1-AS1 knockdown significantly suppressed CRC cell proliferation and induced apoptosis, whereas enhanced expression of ZEB1-AS1 had the opposite effect. Bioinformatics analysis identified miR-181a-5p as a candidate target of ZEB1-AS1. Moreover, we found an inverse correlation between ZEB1-AS1 and miR-181a-5p expression in CRC tissue. Inhibition of miR-181a-5p significantly upregulated ZEB1-AS1, whereas overexpression of miR-181a-5p had the opposite effect, suggesting that ZEB1-AS1 is negatively regulated by miR-181a-5p. Using luciferase reporter and RIP assays, we found that miR-181a-5p directly targets ZEB1-AS1. Importantly, ZEB1-AS1 may act as an endogenous ‘sponge’ to regulate miRNA targets by competing for miR-181a-5p binding. In summary, our findings provide the evidence supporting the role of ZEB1-AS1 as an oncogene in CRC. Our study also demonstrates that miR-181a-5p targets not only protein-coding genes but also the lncRNA ZEB1-AS1.  相似文献   

4.
There is evidence indicating that bile acid is a promoter of colorectal cancer. Deoxycholic acid modifies apoptosis and proliferation by affecting intracellular signaling and gene expression. We are interested in revealing the relationship between deregulated miRNAs and deoxycholic acid in colorectal cancer development. We found that miR-199a-5p was expressed at a low level in human primary colonic epithelial cells treated with deoxycholic acid compared with control, and miR-199a-5p was significantly down-regulated in colorectal cancer tissues. The miR-199a-5p expression in colorectal cancer cells led to the suppression of tumor cell growth, migration and invasion. We further identified CAC1, a cell cycle-related protein expressed in colorectal cancer, as a miR-199a-5p target. We demonstrated that CAC1 is over-expressed in malignant tumors, and cellular CAC1 depletion resulted in cancer growth suppression. HCT-8 cells transfected with a miR-199a-5p mimic or inhibitor had a decrease or increase in CAC1 protein levels, respectively. The results of the luciferase reporter gene analysis demonstrated that CAC1 was a direct miR-199a-5p target. The high miR-199a-5p expression and low CAC1 protein expression reverse the tumor cell drug resistance. We conclude that miR-199a-5p can regulate CAC1 and function as a tumor suppressor in colorectal cancer. Therefore, the potential roles of deoxycholic acid in carcinogenesis are to decrease miR-199a-5p expression and/or increase the expression of CAC1, which contributes to tumorigenesis in patients with CRC. These findings suggest that miR-199a-5p is a useful therapeutic target for colorectal cancer.  相似文献   

5.
Expression of endoplasmic reticulum (ER) stress-associated genes is often dysregulated in cancer progression. ER protein 29 (ERp29) is abnormally expressed in many neoplasms and plays an important role in tumorigenesis. Here, we showed ERp29 is a novel target for microRNA-135a-5p (miR-135a-5p) to inhibit the progression of colorectal cancer (CRC); correspondingly, ERp29 acts as an oncoprotein in CRC by promoting proliferation and metastasis of CRC cells, and suppressing apoptosis of the cells. More importantly, we found that miR-135a-5p expression is reversely upregulated by ERp29 through suppressing IL-1β-elicited methylation of miR-135a-5p promoter region, a process for enterocyte to maintain a balance between miR-135a-5p and ERp29 but dysregulated in CRC. Our study reveals a novel feedback regulation loop between miR-135a-5p and ERp29 that is critical for maintaining appropriate level of each of them, but partially imbalanced in CRC, resulting in abnormal expression of miR-135a-5p and ERp29, which further accelerates CRC progression. We provide supporting evidence for ERp29 and miR-135a-5p as potential biomarkers for diagnosis and treatment of CRC.Subject terms: Cell death, Oncogenes  相似文献   

6.
Colorectal cancer (CRC) is the fourth most deadly cancer worldwide, drug resistance impedes treatment of CRC. It is still urgent to find new molecular targets to improve the sensitivity of chemotherapeutic drugs. In this study, circ-ERBB2 was upregulated in CRC cells. Upregulation of circ-ERBB2 promoted CRC cells proliferation and clone formation, but inhibited apoptosis. We identified miR-181a-5p as circ-ERBB2's target. The effect of miR-181a-5p on CRC cells was contrary to circ-ERBB2, miR-181a-5p downregulation abolished the function of circ-ERBB2 silencing in CRC cells. In addition, phosphatase and tensin homolog (PTEN) was verified as miR-181a-5p's downstream target, circ-ERBB2 activates the Akt pathway and inhibits cell apoptosis through modulating miR-181a-5p/PTEN. Circ-ERBB2 silencing significantly reduced CRC cell resistance to 5-FU. miR-181a-5p downregulation abolished the role of circ-ERBB2 knockdown in CRC cell resistance to 5-FU. In conclusion, upregulation of circ-ERBB2 promoted the malignancy of CRC and reduced CRC cell resistance to 5-FU. Besides, additional mechanism study provided a novel regulatory pathways that circ-ERBB2 knockdown promoted CRC cell sensitivity to 5-FU by regulating miR-181a-5p/PTEN/Akt pathway. This research indicated that circ-ERBB2 may be a valuable biomarker for the diagnosis and treatment of CRC.  相似文献   

7.
miR-138-5p has been identified as a novel cancer-related miRNA molecule in a variety of malignancies. However, the functions and mechanisms underlying miR-138-5p in colorectal carcinoma (CRC) remains largely unknown. In the present study, we analysed the biological effects and clinical significance of miR-138-5p in CRC. miR-138-5p expression was analysed by quantitative real-time PCR in CRC tissues and cell lines. The effects of miR-138-5p on CRC cell growth was detected by cell proliferation, colony formation, cell cycle and cell apoptosis assays in vitro and in vivo. Our data showed that miR-138-5p was significantly downregulated in CRC. Downregulated miR-138-5p was related with poor prognosis in patients with CRC. miR-138-5p suppressed CRC growth but promoted cell death both in vitro and in vivo. Online predictions and integrated experiments identified that miR-138-5p targeted MCU, and downregulated miR-138-5p promoted mitochondrial biogenesis in CRC. In the light of the underlying mechanisms, our results indicated that downregulated miR-138-5p led to increased expression of MCU, which subsequently increased the production of ROS to promote CRC growth. Our results indicated that downregulated miR-138-5p strengthened mitochondrial biogenesis through targeting MCU, thus contributing to CRC cell growth, which may provide a potential therapeutic target for CRC.  相似文献   

8.
More and more documents have proved that the abnormal expression of long noncoding RNAs (lncRNAs) are correlated with the initiation and progression of colorectal cancer (CRC). lncRNA FOXD3-AS1 has been reported in glioma for its oncogenic property. According to the survival analysis of The Cancer Genome Atlas database, FOXD3-AS1 upregulation implied lower survival rate of patients with CRC. Quantitative real-time polymerase chain reaction showed the overexpression of FOXD3-AS1 in both CRC tissues and cells. The Kaplan–Meier method demonstrated the prognostic value of FOXD3-AS1 for patients with CRC. To explore the effect of FOXD3-AS1 on CRC progression, loss-of-function experiments were carried out, whose results indicated that knockdown of FOXD3-AS1 suppressed cell proliferation, migration, and invasion, inhibited cell cycle and promoted cell apoptosis in vitro. In vivo experiments affirmed that FOXD3-AS1 affected tumor growth. FOXD3-AS1 expression was enriched in the cytoplasm of CRC cells. Mechanism experiments revealed that FOXD3-AS1 served as a competing endogenous RNA to upregulate SIRT1 by sponging miR-135a-5p. In addition, SIRT1 silencing also restrained cell proliferation and motility. Rescue assays revealed the biological function of FOXD3-AS1/miR-135a-5p/SIRT1 axis in CRC progression. In conclusion, FOXD3-AS1 promotes CRC progression by regulating miR-135a-5p/SIRT1 axis, shedding lights on the way to CRC treatments.  相似文献   

9.
Insulin receptor substrate 1 (IRS1) is a potential oncogene that has been implicated in several malignant tumors. However, the regulatory mechanism of IRS1 remains to be investigated. The aim of our current study is to unveil the mechanism by which IRS1 exerts functions in tumorigenesis of colorectal cancer (CRC). The expression level of IRS1 was found to be higher in CRC cells in comparison with the normal cell. To determine the role of IRS1 in regulating CRC cellular processes, loss-of-function assays were designed and carried out in two CRC cell lines. Both in vitro and in vivo functional assays indicated that silencing of IRS1 suppressed CRC cell survival. Based on bioinformatics prediction and mechanism experiments, IRS1 was identified as a downstream target of miR-30a-5p. Furthermore, RNA-binding protein lin-28 homolog B (LIN28B) was determined to be a stabilizer of IRS1 messenger RNA. More importantly, LIN28B also acted as a target of miR-30a-5p.Through rescue assays, we proved that LIN28B-stablized IRS1 mediated miR-30a-5p-mediated CRC cell growth. In conclusion, this study revealed that LIN28B and LIN28B-stablized IRS1 promoted CRC cell growth by cooperating with miR-30a-5p.  相似文献   

10.
Docetaxel resistance remains one of the main problems in clinical treatment of metastatic prostate cancer (PCa). Previous studies identified differently expressed lncRNAs in docetaxel-resistant PCa cell lines, while the potential mechanisms were still unknown. In the present study, we found NEAT1 was expressed at high levels in docetaxel-resistant PCa clinical samples and related cell lines. When knockdown NEAT1, cell proliferation and invasion in docetaxel-resistant PCa cells in vitro and in vivo were downregulated. Our further researches explained that NEAT1 exerts oncogenic function in PCa by competitively ‘sponging’ both miR-34a-5p and miR-204-5p. Inhibition of miR-34a-5p or miR-204-5p expression mimics the docetaxel-resistant activity of NEAT1, whereas ectopic expression of miR-34a-5p or miR-204-5p attenuates the anti-drug function of NEAT1 in PCa cells. Besides, we also found ACSL4 is a target of both miR-34a-5p and miR-204-5p, and ACSL4 was also inhibited by miR-34a-5p and miR-204-5p. Moreover, suppression of miR-34a-5p or/and miR-204-5p greatly restrained the expression of ACSL4 upon NEAT1 overexpression. Joint expression of miR-34a-5p and miR-204a-5p synergistically decreased the expression of ASCL4, indicating miR-34a-5p and miR-204a-5p collaboratively inhibit the expression of ACSL4. Innovatively, we concluded that NEAT1 contributes to the docetaxel resistance by increasing ACSL4 via sponging miR-34a-5p and miR-204-5p in PCa cells.  相似文献   

11.
In this study, we investigated the role ofhistone deacetylase 4 (HDAC4) and MEG3/miR-125a-5p/interferonregulatoryfactor 1 (IRF1) on vascular smooth muscle cell (VSMCs)proliferation. Platelet derived growth factor (PDGF)-BB was used toinduce the proliferation and migration of VSMCs. The expressionsof MEG3, miR-125a-5p, HDAC4 and IRF1in VSMCs were detectedby qRT-PCR and western blot, respectively. ChIP assay was usedto determine the relationship between MEG3 and HDAC4. Doubleluciferase reporter assay was used to test the regulation betweenmiR-125-5p and IRF1. Results showed that PDGF-BB decreasedthe expression of MEG3 and IRF1, while increased the expressionof miR-125a-5p and HDAC4. In addition, HDAC4 knockdowninhibited the proliferation and migration of VSMCs via upregulatingMEG3 and downregulating miR-125a-5p. MiR-125a-5p inhibitorcould repress the proliferation and migration of VSMCs andalleviate intimal hyperplasia (IH) by directly upregulating IRF1expression. These results suggested that HDAC4 interferenceinhibited PDGF-BB-induced VSMCs proliferation via regulatingMEG3/miR-125a-5p/IRF1 axis, and then alleviated IH.  相似文献   

12.
C-X-C motif chemokine receptor 7 (CXCR7) is a newly discovered atypical chemokine receptor that binds to C-X-C motif chemokine ligand 12 (CXCL12) with higher affinity than CXCR4 and is associated with the metastasis of colorectal cancer (CRC). Cancer-associated fibroblasts (CAFs) have been known to promote tumor progression. However, whether CAFs are involved in CXCR7-mediated metastasis of CRC remains elusive. We found a significant positive correlation between CXCR7 expression and CAF activation markers in colonic tissues from clinical specimens and in villin-CXCR7 transgenic mice. RNA sequencing revealed a coordinated increase in the levels of miR-146a-5p and miR-155-5p in CXCR7-overexpressing CRC cells and their exosomes. Importantly, these CRC cell-derived miR-146a-5p and miR-155-5p could be uptaken by CAFs via exosomes and promote the activation of CAFs through JAK2–STAT3/NF-κB signaling by targeting suppressor of cytokine signaling 1 (SOCS1) and zinc finger and BTB domain containing 2 (ZBTB2). Reciprocally, activated CAFs further potently enhanced the invasive capacity of CRC cells. Mechanistically, CAFs transfected with miR-146a-5p and miR-155-5p exhibited a robust increase in the levels of inflammatory cytokines interleukin-6, tumor necrosis factor-α, transforming growth factor-β, and CXCL12, which trigger the epithelial–mesenchymal transition and pro-metastatic switch of CRC cells. More importantly, the activation of CAFs by miR-146a-5p and miR-155-5p facilitated tumor formation and lung metastasis of CRC in vivo using tumor xenograft models. Our work provides novel insights into CXCR7-mediated CRC metastasis from tumor–stroma interaction and serum exosomal miR-146a-5p and miR-155-5p could serve as potential biomarkers and therapeutic targets for inhibiting CRC metastasis.Subject terms: Cancer microenvironment, Colon cancer  相似文献   

13.

Background

microRNAs (miRNAs) play a critical role in tumorigenesis, either as a tumor suppressor or as an oncogenic miRNA, depending on different tumor types. To date, scientists have obtained a substantial amount of knowledge with regard to miRNAs in pancreatic cancer. However, the expression and function of miR-371-5p in pancreatic cancer has not been clearly elucidated. The aim of this study was to investigate the roles of miR-371-5p in pancreatic cancer and its association with the survival of patients with pancreatic cancer.

Methods

The expression of miR-371-5p was examined in pancreatic duct adenocarcinoma (PDAC) and their adjacent normal pancreatic tissues (ANPT) or in pancreatic cancer cell lines by qRT-PCR. The association of miR-371-5p expression with overall survival was determined. The proliferation and apoptosis of SW-1990 and Panc-1 cells, transfected with miR-371-5p mimics or inhibitor, were assessed using MTT assay and flow cytometry, respectively. The tumorigenicity was evaluated via mice xenograft experiments. miR-371-5p promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). Protein expression was analyzed by Western blot.

Results

The expression level of miR-371-5p was dramatically upregulated in clinical PDAC tissues compared with ANPT. Patients with high miR-371-5p expression had a significantly shorter survival than those with low miR-371-5p expression. The in vitro and in vivo assays showed that overexpression of miR-371-5p resulted in cell proliferation and increased tumor growth, which was associated with inhibitor of growth 1 (ING1) downregulation. Interestingly, we also found that ING1, in turn, inhibited expression of miR-371-5p in the promoter region.

Conclusions

our study demonstrates a novel ING1-miR-371-5p regulatory feedback loop, which may have a critical role in PDAC. Thus miR-371-5p can prove to be a novel prognostic factor and therapeutic target for pancreatic cancer treatment.  相似文献   

14.
目的: 探讨miR-34a-5p在三阴性乳腺癌(triple negative breast cancer,TNBC)中的表达,分析miR-34a-5p对TNBC细胞增殖、凋亡、迁移的作用,对TNBC荷瘤小鼠肿瘤生长的影响以及在TNBC中对B7-H1表达的影响。方法: 利用RT-qPCR、Western blot分析TNBC细胞中miR-34a-5p、B7-H1的表达,并利用Kaplan-Meier分析二者的表达与TNBC患者的生存关系;将miR-34a-5p转染TNBC细胞,通过CCK-8、流式细胞术及划痕实验检测miR-34a-5p对TNBC细胞增殖、凋亡、迁移的影响;利用RT-qPCR、Western blot检测miR-34a-5p、B7-H1表达水平的变化,双荧光素酶基因报告验证miR-34a-5p与B7-H1的相互作用;利用RT-qPCR、Western blot、IHC检测miR-34a-5p对MDA-MB-231荷瘤小鼠miR-34a、B7-H1表达的影响。结果: TNBC细胞中miR-34a-5p呈低表达,B7-H1呈高表达,二者均与TNBC患者的不良预后有关,差距具有统计学意义(P<0.01);miR-34a-5p抑制TNBC细胞增殖、侵袭,促进细胞凋亡,并且在TNBC细胞中靶向抑制B7-H1;miR-34a-5p agomir在体内抑制MDA-MB-231成瘤裸鼠的肿瘤生长和B7-H1表达。结论: miR-34a-5p在TNBC发生、发展中发挥着重要作用,靶向miR-34a-5p/B7-H1可能成为TNBC患者新的分子治疗策略。  相似文献   

15.
Aberrant microRNAs are widely identified in multiple cancers, including lung cancer. miR-135a-5p can function as a significant tumor regulator in diverse cancers via impacting multiple genes in oncogenic pathways. Nevertheless, the biological role of miR-135a-5p in lung cancer is poorly known. Here, we investigated its function in lung cancer. As exhibited, miR-135a-5p was elevated in lung cancer cells in contrast to BEAS-2B cells. Then, we inhibited miR-135a-5p expression by transfecting LV-anti-miR-135a-5p into lung cancer cells. As displayed, miR-135a-5p was obviously reduced in A549 and H1299 cells. Knockdown of miR-135a-5p repressed lung cancer cell growth and cell proliferation. Meanwhile, cell colony formation capacity was depressed, cell apoptosis was enhanced and cell cycle progression was blocked in G1 phase by inhibition of miR-135a-5p in vitro. Additionally, the migration and invasion of A549 and H1299 cells was strongly depressed by LV-anti-miR-135a-5p. For another, by using informatics analysis, lysyl oxidase-like 4 (LOXL4) was speculated as the downstream target of miR-135a-5p. We validated their direct correlation and moreover, overexpression of miR-135a-5p restrained LOXL4 levels in lung cancer cells. Subsequently, we proved that miR-135a-5p promoted lung cancer development via targeting LOXL4 by carrying out the in vivo assays. Taken these together, our study revealed miR-135a-5p might be indicated as a perspective for lung cancer via targeting LOXL4.  相似文献   

16.
目的: MiR-378a-5p是一种被认为在多种肿瘤发生过程中具有抑制肿瘤生长的微小RNA。然而miR-378a-5p在鼻咽癌中的 作用尚未见报道。因此,本文旨在通过临床样本的miRNA 表达谱分析以及细胞学实验从而揭示miR-378a-5p在鼻咽癌肿瘤发生过程中的作用。方法与结果:我们通过生物信息学的方法获取了鼻咽癌临床样本中miR-378a-5p的表达信息并通过与正常组织的 对比发现miR-378a-5p在鼻咽癌肿瘤组织中表达水平显著降低(P<0.01)。其次,我们发现高表达miR-378a-5p的鼻咽癌CNE-1 细 胞增殖速度显著较对照组降低(约40%~50%)。克隆形成实验证实了瞬时转染miR-378a-5p的鼻咽癌CNE-1 细胞的克隆形成数 量显著减弱。我们通过将稳定表达miR-378a-5p的CNE-1 细胞注射到裸鼠体内形成移植瘤并记录肿瘤生长曲线,结果显示 miR-378a-5p高表达组的裸鼠移植瘤体积明显较对照组小约50%,肿瘤重量显著降低(对照组0.33 g,处理组0.15 g)。结论:本研究通过对临床样本的分析以及在细胞和动物水平的实验验证揭示了miR-378a-5p具有抑制鼻咽癌肿瘤细胞增殖和肿瘤生长的作用。  相似文献   

17.
Here, we report the expression pattern, function and regulatory mechanism of SNHG15 together with miR-18a-5p micro RNA in ovarian cancer (OC) for the first time. We recruited 20 patients and took normal ovarian tissues and ovarian tumor tissues from them. We used cell culture, transfection, in vivo tumor xenograft assay, and multiple types of detection assays to investigate the expression and regulation of long noncoding RNA (lncRNA) SNHG15/miR-18a-5p in ovarian tissues and cells. Results: We found that the messenger RNA expression level of SNHG15 was significantly higher and miR-18 was decreased in ovarian cancer tissues and in OC cells. Functional experiments showed that SNHG15 overexpression potentiated the migration and invasion of OC cells, while SNHG15 inhibition reduced the tumor proliferation, which was restored via overexpression of miR-18a. SNHG15 was found to directly target and suppress the expression of miR-18a. Our results illustrate the possible molecular mechanism of lncRNA SNHG15/miR-18a-5p functions in cell proliferation in OC. SNHG15/miR-18a promoted the progression of OC cells via the protein kinase B/mammalian target of rapamycin signaling pathway.  相似文献   

18.
目的: 探讨miR-193a-5p靶向CDK14并调控卵巢癌细胞OVAC的增殖和上皮间充质转变(EMT)的作用。方法: 通过TargetScanHuman分析miR-193a-5p与CDK14的匹配情况,通过荧光素酶报告系统检测miR-193a-5p靶向CDK14情况;在miR-193a-5p mimics过表达或者miR-193a-5p inhibitor基因沉默miR-193a-5p的情况下,采用免疫印迹检测CDK14,EMT相关蛋白质E-cadherin、vimentin、fibronectin和N-cadherin的表达量,采用CCK-8检测卵巢癌细胞OVAC增殖情况, MMT检测卵巢癌细胞OVAC的细胞活力。结果: miR-193a-5p靶向CDK14的3‘UTR;过表达miR-193a-5后, CDK14的表达下降,EMT相关蛋白质E-cadherin的表达上升,vimentin、fibronectin和N-cadherin的表达下降,卵巢癌细胞OVAC的增殖和细胞活力均增加;同时,基因沉默miR-193a-5p后, CDK14的表达上升,EMT相关蛋白质E-cadherin的表达下降,vimentin、fibronectin和N-cadherin的表达量上升,卵巢癌细胞OVAC的增殖和细胞活力均减少。结论: miR-193a-5p通过靶向CDK14的3‘UTR降低卵巢癌细胞OVAC的增殖、细胞活力和EMT。  相似文献   

19.

Aims

Aberrant expression of microRNAs (miRNAs) results in alterations of various biological processes (e.g., cell cycle, cell differentiation, and apoptosis) and cell transformation. Altered miRNAs expression was associated with lung carcinogenesis and tumor progression. This study aimed to investigate the function and underlying molecular events of miR-517a-3p on regulation of lung cancer cell proliferation and invasion.

Main methods

Transfected miR-517a-3p mimics or inhibitors into 95D and 95C cells respectively, the effects of miR-517a-3p on lung cancer cell proliferation, migration, and invasion were detected. Bioinformatics software forecasted potential target genes of miR-517a-3p and dual luciferase reporter gene system and western blot verified whether miR-517a-3p regulates FOXJ3 expression directly.

Key findings

MiR-517a-3p was differentially expressed in lung cancer 95D and 95C cell lines that have different metastatic potential. Manipulation of miR-517a-3p expression changed lung cancer cell proliferation, migration and invasion capacity. MiR-517a-3p directly regulated FOXJ3 expression by binding to FOXJ3 promoter.

Significance

This study demonstrated that miR-517a-3p promoted lung cancer cell proliferation and invasion by targeting of FOXJ3 expression.  相似文献   

20.
Fetal growth restriction (FGR) is a serious pregnancy complication associated with increased perinatal mortality and morbidity. It may lead to neurodevelopmental impairment and adulthood onset disorders. Recently, long noncoding RNAs (lncRNAs) were found to be associated with the pathogenesis of FGR. Here we report that the lncRNAH19 is significantly decreased in placentae from pregnancies with FGR. Downregulation of H19 leads to reduced proliferation and invasion of extravillous trophoblast cells. This is identified with reduced trophoblast invasion, which has been discovered in FGR. Autophagy is exaggerated in FGR. Downregulation of H19 promotes autophagy via the PI3K/AKT/mTOR and MAPK/ERK/mTOR pathways of extravillous trophoblast cells in FGR. We also found that the expression level of microRNAs miR-18a-5p was negatively correlated with that of H19. H19 can act as an endogenous sponge by directly binding to miR-18a-5p, which targets IRF2. The expression of miR-18a-5p was upregulated, but IRF2 expression was downregulated after the H19 knockdown. In conclusion, our study revealed that H19 downexpressed could inhibit proliferation and invasion, and promote autophagy by targeting miR-18a-5pin HTR8 and JEG3 cells. We propose that aberrant regulation of H19/miR-18a-5p-mediated regulatory pathway may contribute to the molecular mechanism of FGR. We indicated that H19 may be a potential predictive, diagnostic, and therapeutic modality for FGR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号