首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis B virus x (HBx) protein is involved in the initiation and progression of HBV-related hepatocellular carcinoma (HCC) by regulating host protein-coding genes. However, the role of HBx in the epigenetic repression of miRNAs, which play important roles in gene regulation during hepatocarcinogenesis, remains largely unknown. In this study, the expression of miR-132 in HCC cells, HBV-related HCC tissues, and serum were determined using real-time PCR. The level of DNA methylation on the promoter of miR-132 was examined using methylation-specific PCR (MSP). MiR-132 was functionally characterized in HCC cells with transiently altered miR-132 expression. HBx-induced DNA hypermethylation of the promoter of miR-132 was found to be more prevalent in HBx-expressing HepG2 cells than in control cells. Consistently, MiR-132 expression was also more frequently down-regulated in HBV-related HCC tissues than in adjacent noncancerous hepatic tissues and had a significant inverse correlation with HBx expression in HBV-related HCCs. Serum miR-132 levels were found to be significantly correlated with levels in tumor tissue. Finally, proliferation and colony formation of HCC cells were found to be suppressed by miR-132-mediated inhibition of the Akt-signaling pathway in miR132 transfected cells. Our study has demonstrated the epigenetic repression of miR-132 expression through DNA methylation induced by HBx. This work provides novel mechanistic insights into HBV-mediated hepatocarcinogenesis and suggests that miR-132 may be a promising biochemical marker and may have therapeutic applications in HBV-related HCC.  相似文献   

2.
The hepatitis B virus x (HBx) protein has been implicated in HBV-related hepatocellular carcinoma (HCC) pathogenesis. However, whether HBx regulates miRNA expression that plays important roles in gene regulation during hepatocarcinogenesis remains unknown. The expression of microRNA-101 (miR-101) in HBV-related HCC tissues and HCC cells was evaluated by real-time PCR. The direct target of miR-101, DNA methyltransferase 3A (DNMT3A), was identified in silico and validated using a 3′-UTR reporter assay. miR-101 was functionally characterized in cells with transiently altered miR-101 expression. HBx expression was found to have a significant inverse correlation with miR-101 expression in HBx-expressing HepG2 compared to control HepG2 cells. miR-101 expression was frequently down-regulated in HBV-related HCC tissues compared to adjacent noncancerous hepatic tissues and had a significant inverse correlation with DNMT3A expression in HBV-related HCCs. Further characterization of miR-101 revealed that it negatively regulated DNA methylation partly through targeting DNMT3A. HBx-mediated miR-101 down-regulation and DNMT3A up-regulation supported the enhanced DNA methylation of several tumor-suppressor genes in HBx-expressing cells. Our studies demonstrating the deregulation of miR-101 expression by HBx may provide novel mechanistic insights into HBV-mediated hepatocarcinogenesis and identify a potential miRNA-based targeted approach for treating HBV-related HCC.  相似文献   

3.
Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). Previous studies have shown several long noncoding RNAs (lncRNAs) play various roles in HCC progression, but no research has focused on the expression pattern of microRNA clusters encoded in lncRNAs. The Ftx gene encodes a lncRNA which harbors 2 clusters of microRNAs in its introns, the miR-374b/421 cluster and the miR-545/374a cluster. To date, no research has focused on the role of the miR-545/374a and miR-374b/421 clusters in HBV-related HCC. In this study, 66 pairs of HBV-related HCC tissue and matched non-cancerous liver tissue specimens were analyzed for the expression of the Ftx microRNA clusters. Our results showed that the miR-545/374a cluster was upregulated in HBV-HCC tissue and significantly correlated with prognosis-related clinical features, including histological grade, metastasis and tumor capsule. Transfection studies with microRNA mimics and inhibitors revealed that miR-545/374a expression promoted in vitro cell proliferation, cell migration and invasion. The wild-type HBV-genome-containing plasmid or full-length HBx protein encoding plasmid was transfected into the Bel-7402 cell line and observed for their influence on miR-545/374a expression. We found that transfection of the HBV genome or HBx alone resulted in an increase in miR-545/374a expression. Next, by monitoring the expression of sera miR-545/374a before and after surgical tumor excision, we found serum miR-545/374a was tumor-derived and exhibited a sharp decrease 25 days after tumor excision. We also examined the gender-based difference in miR-545/374a expression among HCC patients and utilized microRNA target prediction software to find the targets of miR-545/374a. One of these targets, namely estrogen-related receptor gamma (ESRRG) was inversely correlated with miR-545 expression. In conclusion, the overexpression of miR-545/374a cluster located in the Ftx lncRNA is partially responsible for a poor prognosis, and monitoring sera levels of miR-545/374a may be a useful diagnostic marker for HCC.  相似文献   

4.
5.
Hepatitis B virus X protein (HBx) plays crucial roles in the development of hepatocellular carcinoma (HCC). The abnormal lipid metabolism is involved in the hepatocarcinogenesis. We previously reported that HBx suppressed miR-205 in hepatoma cells. In this study, we supposed that HBx-decreased miR-205 might contribute to the abnormal lipid metabolism according to the bioinformatics analysis. Interestingly, we showed that the expression levels of acyl-CoA synthetase long-chain family member 4 (ACSL4) were negatively associated with those of miR-205 in clinical HCC tissues. Then, we validated that miR-205 was able to inhibit the expression of ACSL4 at the levels of mRNA and protein through targeting its 3′UTR. Strikingly, we found that HBx was able to increase the levels of cellular cholesterol, a metabolite of ACSL4, in hepatoma cells, which could be blocked by miR-205 (or Triacsin C, an inhibitor of ACSL4). However, anti-miR-205 could increase the levels of cholesterol in the cells. Moreover, we demonstrated that the levels of cholesterol were increased in the liver of HBx transgenic mice in a time course manner. Functionally, oil red O staining revealed that HBx promoted lipogenesis in HepG2 cells, which could be abolished by miR-205 (or Triacsin C). However, anti-miR-205 was able to accelerate lipogenesis in the cells. Interestingly, the treatment with Triacsin C could remarkably block the role of anti-miR-205 in the event. Thus, we conclude that miR-205 is able to target ACSL4 mRNA. The HBx-depressed miR-205 is responsible for the abnormal lipid metabolism through accumulating cholesterol in hepatoma cells.  相似文献   

6.
Kong G  Zhang J  Zhang S  Shan C  Ye L  Zhang X 《PloS one》2011,6(5):e19518
Hepatitis B virus X protein (HBx) plays important roles in the development of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) contribute to cancer development by acting as oncogenes or tumor suppressors. Previously, we reported that HBx was able to promote the migration of hepatoma HepG2 cells. However, the regulation of miRNAs in the development of HBV-related HCC is poorly understood. In the present study, we reported that miR-29a was a novel regulator of migration of hepatoma cells mediated by HBx. Our data showed that the expression of miR-29a was dramatically increased in p21-HBx transgenic mice, HBx-transfected hepatoma HepG2-X (or H7402-X) cells and HepG2.2.15 cells that constitutively replicate HBV. However, our data showed that miR-29a was upregulated in 4 of the 11 clinical HCC samples. We found that the overexpression of miR-29a promoted the migration of HepG2 cells, while a specific miR-29a inhibitor could partially abolish the enhanced migration of HepG2-X cells. Moreover, we identified PTEN was one of the target genes of miR-29a in HepG2 cells. The deletion of the miR-29a-binding site was able to abolish the role of miR-29a in suppression of luciferase activity of the PTEN 3'UTR reporter. Meanwhile, the overexpression of PTEN was able to reverse the promoted migration of HepG2 cells mediated by miR-29a. Moreover, our data showed that the modulation of Akt phosphorylation, a downstream factor of PTEN, was involved in the cell migration enhanced by miR-29a, suggesting that miR-29a is responsible for the cell migration through its target gene PTEN. Thus, we conclude that miR-29a is involved in the regulation of migration of hepatoma cells mediated by HBx through PTEN in cell culture model.  相似文献   

7.
8.
9.
乙型肝炎病毒x (hepatitis B virus x,HBx)蛋白是导致肝癌(hepatocellular Carcinoma,HCC)的重要因素.但HBX在HCC形成过程中表观遗传机制尚有待阐明.本研究发现microRNA-200c (miR-200c)在过表达乙型肝炎病毒的HCC中下调,并且其直接靶向DNA甲基转移酶3A (DNA methyltransferase 3A,DNMT3A).此外,miR-200c和DNMT3A在HB诱发的肝癌组织中呈现负相关.乙型肝炎病毒诱导miR-200c下调,进而引起DNMT3A表达上调,导致细胞中肿瘤相关基因的启动子超甲基化.我们对乙型肝炎病毒诱导的肝癌表观遗传学改变进行了进一步研究,并提出一种基于miRNA的靶向治疗乙型肝炎病毒相关肝癌的潜在方法.  相似文献   

10.
乙肝病毒感染对细胞基本自噬的影响   总被引:4,自引:0,他引:4  
王娟  时迎娣  杨怀义 《微生物学报》2010,50(12):1651-1656
【目的】慢性乙肝病毒(Hepatitis B virus,HBV)感染在肝硬化和肝癌的发生过程中起着重要的作用,通过研究HBV感染对细胞基本自噬的影响,为HBV感染诱发肝癌以及HBV的免疫逃逸机理研究提供新的思路。【方法】本研究利用乙肝病毒表达质粒瞬时或稳定转染不同肝细胞,通过计数绿色荧光蛋白(greenfluorescent protein,GFP)聚集数目检测自噬小体形成,western blot检测LC3(microtubule-associated proteinlight chain 3,微管相关蛋白质轻链3)脂酰化和p62的降解,通过构建HBV B型和C型X蛋白(HBx)的表达质粒并瞬时转染肝癌细胞和正常肝细胞,对不同基因型X蛋白对细胞自噬的影响进行了分析。【结果】乙肝病毒感染后促进了LC3的脂酰化和p62的降解,增加了自噬小体的形成,增强了细胞的基本自噬。进一步研究发现,HBV感染增强的细胞基本自噬水平由HBx所引发,且C型HBx比B型对细胞基本自噬的增加更加显著。【结论】HBV通过HBx增强细胞的基本自噬,且不同基因型HBx对细胞基本自噬的增强程度不同,为进一步阐明HBV感染机理奠定了基础。  相似文献   

11.
Hepatitis B virus (HBV) infection causes hepatocyte death and liver damage, which may eventually lead to cirrhosis and liver cancer. Hepatitis B virus X protein (HBx) is a key antigen that is critically involved in HBV-associated liver diseases. However, the molecular basis for its pathogenesis, particularly in liver damage, has not been well defined. Herein, we report that HBx was able to enhance the susceptibility of hepatocytes to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Increased sensitivity to TRAIL was associated with HBx-induced upregulation of miR-125a, which, in turn, suppressed the expression of its putative target gene, A20 E3 ligase. Importantly, we demonstrate that the defective expression of A20 impaired the K63-linked polyubiquitination of caspase-8, which reciprocally enhanced the activation of caspase-8, the recruitment of Fas-associated death domain (FADD), and the formation of death-inducing signaling complex (DISC), thereby promoting HBx-mediated apoptotic signaling. Accordingly, antagonizing miR-125a or ectopically expressing A20 in hepatocytes abolished the pro-apoptotic effect of HBx. Conversely, the overexpression of miR-125a or knockdown of A20 mimicked HBx to enhance TRAIL susceptibility in hepatocytes. Thus, we establish, for the first time, a miR-125a/A20-initiated and caspase-8-targeted mechanism by which HBx modulates apoptotic signaling and increases hepatic susceptibility to the damaging agent, which might provide novel insight into HBV-related liver pathology.  相似文献   

12.
Hepatocellular carcinoma (HCC) remains one of the most prevalent malignant diseases worldwide, and the majority of cases are related to hepatitis B virus (HBV) infection. Interactions between the HBV-encoded X (HBx) protein and host factors are known to play major roles in the onset and progression of HBV-related HCC. These dynamic molecular mechanisms are extremely complex and lead to prominent changes in the host genetic and epigenetic architecture. This review summarizes the current knowledge about HBx-induced epigenetic changes, including aberrations in DNA methylation, histone modifications, and microRNA expression, and their roles in HBV-infected liver cells and HBV-related HCC. Moreover, the HBx-mediated epigenetic control of HBV covalently closed circular DNA (cccDNA) is also discussed. Although this field of study is relatively new, the accumulated evidence has indicated that the epigenetic events induced by HBx play important roles in the development of HBV-related HCC. Ongoing research will help to identify practical applications of the HBV-related epigenetic signatures as biomarkers for early HCC detection or as potential targets to prevent and treat HBV-related HCC.  相似文献   

13.
14.
15.
The long noncoding RNA growth-arrest specific 5 (GAS5) is a suppressor of many cancers. However, the role and mechanism of action of GAS5 in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remain unclear. Here, the expression of hepatitis B virus x gene (HBx) mRNA and GAS5 was assessed by qRT–PCR, and western blot analysis was performed to determine the protein expression levels. In addition, the cell viability and invasion of cells were confirmed using  MTT assay and Transwell assay, respectively. The DNA methylation level of GAS5 was measured by methylation-specific PCR. Moreover, RIP assay and RNA pull down assay were carried out to examine the combination of Y-box-binding protein 1 (YBX1) and GAS5. First, our data proved that HBx is increased, while GAS5 is decreased in HCC cell lines. Subsequently, we found that HBx facilitates HCC cell viability and invasion by inhibiting GAS5 expression. Then, we further clarified that HBx induces the DNA methylation of GAS5 by promoting methyltransferase expression, thereby suppressing GAS5 expression. Furthermore, GAS5 binds YBX1 and promotes YBX1 and p21 expression. Finally, the functional analysis revealed that the upregulation of GAS5 could attenuate cell viability and invasion by boosting p21 expression via binding YBX1. Overall, our results demonstrated that HBx promotes HCC progression by inducing GAS5 methylation to reduce its expression. The upregulation of GAS5 suppressed HBV-related HCC by activating YBX1/p21 signaling. Our data provide novel evidence supporting the potential of GAS5 as a treatment target in HBV-related HCC.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00645-z.  相似文献   

16.
Hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC), which is a highly aggressive cancer. HBV X protein (HBx), one of four HBV gene products, plays pivotal roles in the development and metastasis of HCC. It has been reported that HBx induces liver cancer cell migration and reorganizes actin cytoskeleton, however the molecular basis for actin cytoskeleton reorganization remains obscure. In this study, we for the first time report that HBx promotes actin polymerization and liver cancer cell migration by regulating calcium modulated protein, calmodulin (CaM). HBx physically interacts with CaM to control the level of phosphorylated cofilin, an actin depolymerizing factor. Mechanistically, HBx interacts with CaM, liberates Hsp90 from its inhibitory partner CaM, and increases the activity of Hsp90, thus activating LIMK1/cofilin pathway. Interestingly, the interaction between HBx and CaM is calcium-dependent and requires the CaM binding motif on HBx. These results indicate that HBx modulates CaM which plays a regulatory role in Hsp90/LIMK1/cofilin pathway of actin reorganization, suggesting a new mechanism of HBV-induced HCC metastasis specifically derived by HBx.  相似文献   

17.
Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.  相似文献   

18.
19.
Wang Q  Zhang T  Ye L  Wang W  Zhang X 《Cancer epidemiology》2012,36(4):369-374
Hepatitis B virus (HBV) X (HBx) gene multi-site mutations are a frequent event in the clinical hepatocellular carcinoma (HCC) tissues. It has been reported that the mutation of the HBx plays a crucial role in the development of HBV-related HCC. To identify the novel mutations of HBx in the HCC tissues, we examined and analyzed the sequences of HBx gene in 60 cases of HCC tumor tissues and paratumor tissues from China by polymerase chain reaction (PCR). The mutation patterns of HBx were analyzed by comparing the tumor tissues with non-tumor tissues. The data showed that 44 cases of tissues out of 60 patients were HBV-positive. Our results showed that the mutations at amino acid 30, 88, 144 from tumor samples and at amino acid 31, 43, 87, 94 from non-tumor samples were highly frequent events. Interestingly, we found that a novel type of HBx linked-mutations, such as at aa L30F/S144A, was 29.5% (13/44) positive in the tumor tissues. However, the role of HBx gene mutations at aa L30F/S144A relative to wild type HBx gene is unclear in hepatocarcinogenesis. The novel HBx linked-mutations may be significant in the development of HCC.  相似文献   

20.
As the most abundant liver-specific microRNA (miRNA), miR-122 has been extensively studied for its role in the regulation of lipid metabolism, hepatocarcinogenesis and hepatitis C virus (HCV) replication, but little is known regarding its role in the replication of Hepatitis B virus (HBV), a highly prevalent hepatotropic virus that can cause life-threatening complications. In this study we examined the effects of antisense inhibition of miR-122 and transfection of a miR-122 mimic on HBV expression in hepatoma cells. The over-expression of miR-122 inhibited HBV expression, whereas the depletion of endogenous miR-122 resulted in increased production of HBV in transfected cells. We further found that the down-regulation of Heme oxygenase-1 (HO-1) by miR-122 plays a negative role in the miR-122-mediated inhibition of viral expression. Our study demonstrates the anti-HBV activity of miR-122, suggesting that therapies that increase miR-122 and HO-1 may be an effective strategy to limit HBV replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号