首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caveolae are 25–100 nm flask-like membrane structures enriched in cholesterol and glycosphingolipids. Researchers have proposed that Campylobacter jejuni require caveolae for cell invasion based on the finding that treatment of cells with the cholesterol-depleting compounds filipin III or methyl-β-cyclodextrin (MβCD) block bacterial internalization in a dose-dependent manner. The purpose of this study was to determine the role of caveolae and caveolin-1, a principal component of caveolae, in C. jejuni internalization. Consistent with previous work, we found that the treatment of HeLa cells with MβCD inhibited C. jejuni internalization. However, we also found that the treatment of HeLa cells with caveolin-1 siRNA, which resulted in greater than a 90% knockdown in caveolin-1 protein levels, had no effect on C. jejuni internalization. Based on this observation we performed a series of experiments that demonstrate that MβCD acts broadly, disrupting host cell lipid rafts and C. jejuni- induced cell signaling. More specifically, we found that MβCD inhibits the cellular events necessary for C. jejuni internalization, including membrane ruffling and Rac1 GTPase activation. We also demonstrate that MβCD disrupted the association of the β1 integrin and EGF receptor, which are required for the maximal invasion of epithelial cells. In agreement with these findings, C. jejuni were able to invade human Caco-2 cells, which are devoid of caveolae, at a level equal to that of HeLa cells. Taken together, the results of our study demonstrate that C. jejuni internalization occurs in a caveolae-independent manner.  相似文献   

2.
Caveolin-1 (Cav-1) is an integral membrane protein that plays an important role in proliferative and terminally differentiated cells. As a structural component of Caveolae, Cav-1 interacts with signaling molecules via a caveolin scaffolding domain (CSD) regulating cell signaling. Recent reports have shown that Cav-1 is a negative regulator in tumor metastasis. Therefore, we hypothesize that Cav-1 inhibits cell migration through its CSD. HeLa cells were engineered to overexpress Cav-1 (Cav-1 OE), Cav-1 without a functional CSD (?CSD), or enhanced green fluorescent protein (EGFP) as a control. HeLa cell migration was suppressed in Cav-1 OE cells while ?CSD showed increased migration, which corresponded to a decrease in the tight junction protein, zonula occludens (ZO-1). The migration phenotype was confirmed in multiple cancer cell lines. Phosphorylated STAT-3 was decreased in Cav-1 OE cells compared to control and ?CSD cells; reducing STAT-3 expression alone decreased cell migration. ?CSD blunted HeLa proliferation by increasing the number of cells in the G2/M phase of the cell cycle. Overexpressing the CSD peptide alone suppressed HeLa cell migration and inhibited pSTAT3. These findings suggest that Cav-1 CSD may be critical in controlling the dynamic phenotype of cancer cells by facilitating the interaction of specific signal transduction pathways, regulating STAT3 and participating in a G2/M checkpoint. Modulating the CSD and targeting specific proteins may offer potential new therapies in the treatment of cancer metastasis.  相似文献   

3.
Physical coupling of sarcoplasmic reticulum (SR) type 1 inositol 1,4,5-trisphosphate receptors (IP(3)R1) to plasma membrane canonical transient receptor potential 3 (TRPC3) channels activates a cation current (I(Cat)) in arterial smooth muscle cells that induces vasoconstriction. However, structural components that enable IP(3)R1 and TRPC3 channels to communicate locally are unclear. Caveolae are plasma membrane microdomains that can compartmentalize proteins. Here, we tested the hypothesis that caveolae and specifically caveolin-1 (cav-1), a caveolae scaffolding protein, facilitate functional IP(3)R1 to TRPC3 coupling in smooth muscle cells of resistance-size cerebral arteries. Methyl-β-cyclodextrin (MβCD), which disassembles caveolae, reduced IP(3)-induced I(Cat) activation in smooth muscle cells and vasoconstriction in pressurized arteries. Cholesterol replenishment reversed these effects. Cav-1 knockdown using shRNA attenuated IP(3)-induced vasoconstriction, but did not alter TRPC3 and IP(3)R1 expression. A synthetic peptide corresponding to the cav-1 scaffolding domain (CSD) sequence (amino acids 82-101) also attenuated IP(3)-induced I(Cat) activation and vasoconstriction. A cav-1 antibody co-immunoprecipitated cav-1, TRPC3, and IP(3)R1 from cerebral artery lysate. ImmunoFRET indicated that cav-1, TRPC3 channels and IP(3)R1 are spatially co-localized in arterial smooth muscle cells. IP(3)R1 and TRPC3 channel spatial localization was disrupted by MβCD and a CSD peptide. Cholesterol replenishment re-established IP(3)R1 and TRPC3 channel close spatial proximity. Taken together, these data indicate that in arterial smooth muscle cells, cav-1 co-localizes SR IP(3)R1 and plasma membrane TRPC3 channels in close spatial proximity thereby enabling IP(3)-induced physical coupling of these proteins, leading to I(Cat) generation and vasoconstriction.  相似文献   

4.
Caveolin-1 (Cav-1) is a fundamental constituent of caveolae, whose functionality and structure are strictly dependent on cholesterol. In this work the U18666A inhibitor was used to study the role of cholesterol transport in the endosomal degradative-secretory system in a metastatic human melanoma cell line (WM266-4). We found that U18666A induces a shift of Cav-1 from the plasma membrane to the endolysosomal compartment, which is involved, through Multi Vesicular Bodies (MVBs), in the formation and release of small extracellular vesicles (sEVs). Moreover, this inhibitor induces an increase in the production of sEVs with chemical–physical characteristics similar to control sEVs but with a different protein composition (lower expression of Cav-1 and increase of LC3II) and reduced transfer capacity on target cells. Furthermore, we determined that U18666A affects mitochondrial function and also cancer cell aggressive features, such as migration and invasion. Taken together, these results indicate that the blockage of cholesterol transport, determining the internalization of Cav-1, may modify sEVs secretory pathways through an increased fusion between autophagosomes and MVBs to form amphisome, which in turn fuses with the plasma membrane releasing a heterogeneous population of sEVs to maintain homeostasis and ensure correct cellular functionality.  相似文献   

5.
Successful placentation depends on the proper invasion of extravillous trophoblast (EVT) cells into maternal tissues. Previous reports demonstrated that S1P receptors are expressed in the EVT cells and S1P could regulate migration and function of trophoblast cells via S1P receptors. However, little is known about roles of S1P in the invasion of EVT cells. Our study was performed to investigate S1P effect on the invasion of EVT cells. We used the extravillous trophoblast cell line HTR8/SVneo cells to evaluate the effect. In vitro invasion assay was employed to determine the invasion of HTR8/SVneo cells induced by S1P. MMP-2 enzyme activity and relative level in the supernatants of HTR8/SVneo was assessed by gelatin zymography and western blot. Based on the above, siRNA and specific inhibitors were used for the intervention and study of potential signal pathways, and Real-time qPCR and western blot were used to test the mRNA and protein level of potential signal targets. We found that S1P could promote HTR8/SVneo cell invasion and upregulates activity and level of MMP-2. The promotion requires activation of MEK-ERK and is dependent on the axis of S1P/S1PR1. Our investigation of S1P may provide new insights into the molecular mechanisms of EVT invasion.  相似文献   

6.
Abnormal placentation results in either inadequate (consequences: recurrent miscarriage, intrauterine growth restriction, and preeclampsia) or overzealous (consequences: placenta accreta, increta, and percreta) placentation. NK cells dominate in first trimester decidua and probably control extravillous cytotrophoblast (EVT) invasion. We examined this interaction in a novel way, using NK cells and villous explants from concordant first trimester pregnancies cocultured using a new collagen (two-dimensional) model of placentation. Decidual NK (dNK) cells exerted contact-independent inhibition of normal cytotrophoblast migration, associated with changes in the cytotrophoblast expression of metalloproteases-2 and -9, and plasminogen activator inhibitor-1. dNK cells did not affect EVT proliferation and apoptosis, and cell column formation. dNK cell effects were partially reversed by neutralizing Abs against IFN-gamma. We provide ex vivo human evidence of a direct role for dNK in modulating EVT differentiation as they form columns and then migrate from anchoring villi.  相似文献   

7.
During human placentation, the invasion of extravillous trophoblasts (EVTs) into maternal decidual tissues, especially toward maternal spiral arteries, is considered an essential process for subsequent normal fetal development. However, the precise regulatory mechanisms to induce EVT invasion toward arteries and/or to protect EVTs from further invasion have not been well understood. Recently, we found that two cell surface peptidases, dipeptidyl peptidase IV (DPPIV) and carboxypeptidase-M (CP-M,) are differentially expressed on EVTs. DPPIV expression was mainly observed on EVTs that had already ceased invasion. CP-M was detected on migrating EVTs including endovascular trophoblasts in the maternal arteries. The enzymatic inhibition of these peptidases affected the invasive property of choriocarcinoma-derived cell lines, BeWo and JEG3 cells. In addition, a chemokine, RANTES, that is one of the substrates for DPPIV, enhanced invasion of EVTs isolated from primary villous explant culture and its receptor, CCR1, was specifically expressed on migrating EVTs toward maternal arteries. Furthermore, a novel membrane-bound cell surface peptidase, named laeverin, was found to be specifically expressed on EVTs that had almost ceased invasion. These findings suggest that membrane-bound peptidases are important factors regulating EVT invasion during early placentation in humans.  相似文献   

8.
Recent data indicate that placentation in Octodon degus is similar to that in humans, making it a potential animal model for studies in human placental pathologies related to alterations in the migration of the extravillous trophoblast (EVT). Our objective was to immunohistochemically identify degu EVT during placentation by using cytoskeletal protein markers to establish the normal migratory pattern of the EVT. Fifteen O.degus were divided into three equal groups: day 27, 60, and 84 of gestation. The placentas were immunostained for cytokeratin (CK) and alpha smooth muscle actin (SMA). At day 27, the migrating EVT immunostained for SMA but not for CK. Once the EVT was incorporated in the maternal vessels (day 60) it was positive for CK but negative for SMA. The smooth muscle cells of the mesometrial arteries that remained after EVT invasion were positive for SMA. At day 84, the media muscular layer had partially regenerated but some EVT was still present. Furthermore, at day 27 cyclooxygenase-1 (COX-1) was detected in the endothelium of the maternal decidual vessels. Our results suggest that during the early stages of placentation, the cytoskeletal organization of the actin network of the migrating EVT corresponds to that of a cell with motile behavior. Once the EVT invaded the spiral arteries, the cytoskeleton reorganized, adopting the structure of an epithelial-like cell, expressing CK intermediate filaments. The media muscle layer regenerated near the end of gestation but some EVT remained. During EVT formation the endothelium of the maternal decidual vessels immunostained for COX-1.  相似文献   

9.
10.
Caveolin-1 null (-/-) mice show dramatic reductions in life span   总被引:7,自引:0,他引:7  
Caveolae are 50-100 nm flask-shaped invaginations of the plasma membrane found in most cell types. Caveolin-1 is the principal protein component of caveolae membranes in nonmuscle cells. The recent development of Cav-1-deficient mice has allowed investigators to study the in vivo functional role of caveolae in the context of a whole animal model, as these mice lack morphologically detectable caveolae membrane domains. Surprisingly, Cav-1 null mice are both viable and fertile. However, it remains unknown whether loss of caveolin-1 significantly affects the overall life span of these animals. To quantitatively determine whether loss of Cav-1 gene expression confers any survival disadvantages with increasing age, we generated a large cohort of mice (n = 180), consisting of Cav-1 wild-type (+/+) (n = 53), Cav-1 heterozygous (+/-) (n = 70), and Cav-1 knockout (-/-) (n = 57) animals, and monitored their long-term survival over a 2 year period. Here, we show that Cav-1 null (-/-) mice exhibit an approximately 50% reduction in life span, with major declines in viability occurring between 27 and 65 weeks of age. However, Cav-1 heterozygous (+/-) mice did not show any changes in long-term survival, indicating that loss of both Cav-1 alleles is required to mediate a reduction in life span. Mechanistically, these dramatic reductions in life span appear to be secondary to a combination of pulmonary fibrosis, pulmonary hypertension, and cardiac hypertrophy in Cav-1 null mice. Taken together, our results provide the first demonstration that loss of Cav-1 gene expression and caveolae organelles dramatically affects the long-term survival of an organism. In addition, aged Cav-1 null mice may provide a new animal model to study the pathogenesis and treatment of progressive hypertrophic cardiomyopathy and sudden cardiac death syndrome.  相似文献   

11.
小窝蛋白-1(caveolin-1,Cav-1)是胞膜窖(caveolae)的标志性蛋白质。Cav-1在多种细胞的生命活动中起重要作用。大量证据表明,Cav-1参与乳腺癌、肝细胞癌、胰腺癌、前列腺癌、肾透明细胞癌等多种肿瘤的发生发展过程。胶质瘤是中枢神经系统恶性肿瘤之一,由于脑血屏障的存在,很多药物很难到达病灶,因而死亡率极高。近年来发现,Cav-1是胶质瘤细胞增殖的负调控因子,能够降低胶质瘤的迁移和侵袭能力。此外,Cav-1能够增加胶质瘤血瘤屏障的通透性。本文简要综述了近年来Cav-1在脑胶质瘤发生发展及其对血瘤屏障的调节作用的新进展,旨在为胶质瘤的临床治疗提供新的思路。  相似文献   

12.
Migration of extravillous trophoblasts (EVT) into decidua and myometrium is a critical process in the conversion of maternal spiral arterioles and establishing placenta perfusion. EVT migration is affected by cell-to-cell communication and oxygen tension. While the release of exosomes from placental cells has been identified as a significant pathway in materno-fetal communication, the role of placental-derived exosomes in placentation has yet to be established. The aim of this study was to establish the effect of oxygen tension on the release and bioactivity of cytotrophoblast (CT)-derived exosomes on EVT invasion and proliferation. CT were isolated from first trimester fetal tissue (n = 12) using a trypsin-deoxyribonuclease-dispase/Percoll method. CT were cultured under 8%, 3% or 1% O2 for 48 h. Exosomes from CT-conditioned media were isolated by differential and buoyant density centrifugation. The effect of oxygen tension on exosome release (µg exosomal protein/106cells/48 h) and bioactivity were established. HTR-8/SVneo (EVT) were used as target cells to establish the effect (bioactivity) of exosomes on invasion and proliferation as assessed by real-time, live-cell imaging (Incucyte™). The release and bioactivity of CT-derived exosomes were inversely correlated with oxygen tension (p<0.001). Under low oxygen tensions (i.e. 1% O2), CT-derived exosomes promoted EVT invasion and proliferation. Proteomic analysis of exosomes identified oxygen-dependent changes in protein content. We propose that in response to changes in oxygen tension, CTs modify the bioactivity of exosomes, thereby, regulating EVT phenotype. Exosomal induction of EVT migration may represent a normal process of placentation and/or an adaptive response to placental hypoxia.  相似文献   

13.

Background

Caveolin-1 (Cav-1), the major component of caveolae, is a 21–24 kDa integral membrane protein that interacts with a number of signaling molecules. By acting as a scaffolding protein, Cav-1 plays crucial roles in the regulation of various physiologic and patho-physiologic processes including oncogenic transformation and tumorigenesis, and tumor invasion and metastasis.

Methodology/Principal Findings

In the present study we sought to explore the role of Cav-1 in response to DNA damage and the mechanism involved. We found that the level of Cav-1 was up-regulated rapidly in cells treated with ionizing radiation. The up-regulation of Cav-1 following DNA damage occurred only in cells expressing endogenous Cav-1, and was associated with the activation of DNA damage response pathways. Furthermore, we demonstrated that the expression of Cav-1 protected cells against DNA damage through modulating the activities of both the homologous recombination (HR) and non-homologous end joining (NHEJ) repair systems, as evidenced by the inhibitory effects of the Cav-1-targeted siRNA on cell survival, HR frequency, phosphorylation of DNA-dependent protein kinase (DNA-PK), and nuclear translocation of epidermal growth factor receptor (EGFR) following DNA damage, and by the stimulatory effect of the forced expression of Cav-1 on NHEJ frequency.

Conclusion/Significance

Our results indicate that Cav-1 may play a critical role in sensing genotoxic stress and in orchestrating the response of cells to DNA damage through regulating the important molecules involved in maintaining genomic integrity.  相似文献   

14.
15.

Objective

Extravillous trophoblast (EVT) cells invade the endometrium and the maternal spiral arterioles during the first trimester. Mammary Serine Protease Inhibitor (Maspin, SERPINB5) plays a putative role in regulating the invasive activity of cytotrophoblasts. The maspin gene is silenced in various cancers by an epigenetic mechanism that involves aberrant cytosine methylation. We investigated the effect of the methylation status of the maspin promoter on the maspin expression and the aggressiveness of EVT cells.

Methods

Western blotting was used to detect the maspin protein expression in EVT cells upon hypoxia. The proliferative ability, the apoptosis rate and the migration and invasiveness were measured with Cell Counting Kit-8 assay, Flow Cytometry technology and Transwell methods. Subsequently, we treated cells with recombinant maspin protein. The methylation degree of maspin promoter region upon hypoxia/ decitabine was detected by bisulfite sequencing PCR and methylation-specific PCR. Finally, we explored the effects of decitabine on maspin protein expression and the aggressiveness of EVT cells.

Results

Hypoxia effectively increased maspin protein expression in EVT cells and significantly inhibited their aggressiveness. The addition of recombinant maspin protein inhibited this aggressiveness. Decitabine reduced the methylation in the maspin promoter region and effectively increased the maspin protein expression, which significantly weakened the migration and invasiveness of EVT cells.

Discussion

The methylation status of the maspin promoter is an important factor that affects the migration and invasion of EVT cells during early pregnancy. A decrease in the methylation status can inhibit the migration and invasion of EVT cells to affect placentation and can result in the ischemia and hypoxia of placenta.  相似文献   

16.
Numerous components of thecAMP-based signaling cascade, namely G-proteins and G- protein coupledreceptors, adenylyl cyclase, and protein kinase A (PKA) have beenlocalized to caveolae and shown to be regulated by the caveolar markerproteins, the caveolins. In order to gain mechanistic insights intothese processes in vivo, we have assessed the functional interaction ofcaveolin-1 (Cav-1) with PKA using mutational analysis. As two regionsof Cav-1 had previously been implicated in PKA signaling in vitro, weconstructed Cav-1 molecules with mutations/deletions in one or both ofthese domains. Examination of these mutants shows that Cav-1 requiresthe presence of either the scaffolding domain or the COOH-terminaldomain (but not both) to functionally interact with and inhibit PKA.Interestingly, in contrast to the wild-type protein, these Cav-1mutants are not localized to caveolae microdomains. However, uponcoexpression with wild-type Cav-1, a substantial amount of the mutantswas recruited to the caveolae membrane fraction. Using the Cav-1 doublemutant with both disrupted scaffolding and COOH-terminal domains, weshow that wild-type Cav-1's inhibition of PKA signaling can bepartially abrogated in a dose-responsive manner; i.e., the mutant actsin a dominant-negative fashion. Thus, this dominant-negative caveolin-1mutant will be extremely valuable for assessing the functional role ofendogenous caveolin-1 in regulating a variety of other signaling cascades.

  相似文献   

17.
Muscle cells from human gallbladders (GB) with cholesterol stones (ChS) exhibit a defective contraction, excess cholesterol (Ch) in the plasma membrane, and lower binding of CCK-1 receptors. These abnormalities improved after muscle cells were incubated with Ch-free liposomes that remove the excess Ch from the plasma membrane. The present studies were designed to investigate the role of caveolin-3 proteins (Cav-3) in the pathogenesis of these abnormalities. Muscle cells from GB with ChS exhibit higher Ch levels in the plasma membrane that were mostly localized in caveolae and associated with parallel increases in the expression of Cav-3 in the caveolae compared with that in GB with pigment stones (PS). The overall number of CCK-1 receptors in the plasma membrane was not different between muscle cells from GB with ChS and PS, but they were increased in the caveolae in muscle cells from GB with ChS. Treatment of muscle cells from GB with ChS with a Galpha(i3) protein fragment increased the total binding of CCK-1 receptors (from 8.3 to 11.2%) and muscle contraction induced by CCK-8 (from 11.2 to 17.3% shortening). However, Galpha(q/11) protein fragment had no such effect. Moreover, neither fragment had any effect on muscle cells from GB with PS. We conclude that the defective contraction of muscle cells with excessive Ch levels in the plasma membrane is due to an increased expression of Cav-3 that results in the sequestration of CCK-1 receptors in the caveolae, probably by inhibiting the functions of Galpha(i3) proteins.  相似文献   

18.

Background

Human cytomegalovirus (HCMV) is the most common pathogen in uterus during pregnancy, which may lead to some serious results such as miscarriage, stillbirth, cerebellar malformation, fetus developmental retardation, but its pathogenesis has not been fully explained. The hypofunction of extravillous cytotrophoblast (EVT) invasion is the essential pathologic base of some complications of pregnancy. c-erbB-2 is a kind of oncogene protein and closely linked with embryogenesis, tissue repair and regeneration. Matrix metalloproteinase (MMP) is one of the key enzymes which affect EVT migration and invasion function. The expression level changes of c-erbB-2, MMP-2 and MMP-9 can reflect the changes of EVT invasion function.

Results

To explore the influence of HCMV on the invasion function of EVT, we tested the protein expression level changes of c-erbB-2, MMP-2 and MMP-9 in villous explant cultured in vitro infected by HCMV, with the use of immunohistochemistry SP method and western blot. We confirmed that HCMV can reproduce and spread in early pregnancy villus; c-erbB-2 protein mainly expressed in normal early pregnancy villous syncytiotrophoblast (ST) remote plasma membrane and EVT, especially remote EVT cell membrane in villous stem cell column, little expressed in ST proximal end cell membrane and interstitial cells; MMP-2 protein primarily expressed in early pregnancy villous EVT endochylema and rarely in villous trophoblast (VT), ST and interstitial cells; MMP-9 protein largely expressed in early pregnancy villous mesenchyme, EVT and VT endochylema. Compared with control group, the three kinds of protein expression level in early pregnancy villus of virus group significantly decreased (P < 0.05).

Conclusion

HCMV can infect villus in vitro and cause the decrease of early pregnancy villous EVT's invasion function.  相似文献   

19.
Several studies have shown the importance of dystrophin-associated protein complex in the development of muscular dystrophies and dilated cardiomyopathy associated to vascular dysfunction. In vascular endothelium, dystrophin is substituted for utrophin (autosomal homolog of dystrophin); however, its role in this tissue is unknown. Therefore, it is important to obtain a more extensive knowledge of utrophin and its associated proteins in endothelial cells. In a previous study, we demonstrated the presence of utrophin-associated protein complex (UAPC) in human umbilical vein endothelial cells HUVEC, which interacts with caveolin-1 (Cav-1) and endothelial nitric oxide synthase (eNOS). Also, some of our observations suggested the presence of this complex in distinct membrane domains. Therefore, the aim of this study was to analyze the presence of the UAPC in caveolae and non-caveolae lipid rafts domains of HUVEC at baseline and with a mechanical stimulus. It was demonstrated, by subcellular fractionation and co-immunoprecipitation assays, the association of UAPC with Cav-1 and eNOS in caveolae domains, as well as its interaction with eNOS in non-caveolae lipid raft domains. Additionally, it was also observed that mechanical stress on endothelial cells induced activation and release of eNOS from both caveolae and non-caveolae lipid raft associated to UAPC. Together these results suggest that UAPC located in caveolae and non-caveolae lipid raft domains of HUVECs may have a mechanosensory function that could participate in the control of eNOS activity.  相似文献   

20.
Extravillous trophoblast (EVT) cells of the human placenta invade the uterine decidua and utero-placental arteries to establish an efficient exchange of key molecules between maternal and fetal blood. Trophoblast invasion is stringently regulated in situ both positively and negatively by a variety of factors at the fetal-maternal interface to maintain a healthy utero-placental homeostasis. One such factor, decorin, a transforming growth factor (TGF)-beta binding, leucine-rich proteoglycan produced by the decidua, negatively regulates EVT proliferation, migration, and invasiveness independent of TGF-beta. We reported that these decorin actions were mediated by its binding to multiple tyrosine kinase receptors, including vascular endothelial growth factor receptor (VEGFR)-2. The present study explores the mechanisms underlying decorin antagonism of VEGF (VEGF-A) stimulation of endovascular differentiation of EVT using our EVT cell line, HTR-8/SVneo. We observe that decorin inhibits VEGF-induced EVT cell migration and endothelial-like tube formation on matrigel. VEGF activates MAPKs (p38 MAPK, MEK3/6, and ERK1/2) in EVT cells, and the activation is blocked in both cases by decorin. Employing selective MAPK inhibitors, we show that both p38 and ERK pathways contribute independently to VEGF-induced EVT migration and capillary-like tube formation. VEGF upregulates the vascular endothelial (VE) markers VE-cadherin and beta-catenin in EVT and endothelial cells, and this upregulation is blocked by decorin and MAPK inhibitors. These results suggest that decorin inhibits VEGF-A stimulation of trophoblast migration and endovascular differentiation by interfering with p38 MAPK and ERK1/2 activation. Thus decorin-mediated dual impediment of endovascular differentiation of the EVT and angiogenesis may have implications for pathogenesis of preeclampsia, a hypoinvasive trophoblast disorder in pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号