共查询到20条相似文献,搜索用时 63 毫秒
1.
Zi Yin Tingting Ma Jinhai Yan Ning Shi Chuanzhao Zhang Xin Lu Baohua Hou Zhixiang Jian 《Journal of cellular physiology》2019,234(10):18825-18836
Long noncoding RNAs (lncRNAs) have been proven to play critical roles in cancer progression. Recently, lncRNA MAGI2-AS3 has been revealed to be a tumor suppressor and inhibit cell growth by targeting the Fas/FasL signalling pathway in breast cancer. However, the role and underlying mechanism of MAGI2-AS3 in hepatocellular carcinoma (HCC) remain largely unknown. In the current study, we found that MAGI2-AS3 expression is downregulated in HCC tissues and closely associated with some clinical characteristics (tumor size, lymph node metastasis, and TNM stage) and poor overall survival. Overexpression of MAGI2-AS3 inhibits HCC cell proliferation and migration in vitro, while impedes tumor growth in vivo accordantly. In addition, our data suggest that MAGI2-AS3 could function as an endogenous sponge of miR-374b-5p by directly binding to it and suppressing its expression. Furthermore, miR-374b-5p upregulation could restore the inhibitory effect of MAGI2-AS3 on HCC cells processes. Moreover, suppressor with morphogenetic effect on genitalia family member 1 (SMG1) is positively regulated by MAGI2-AS3 via absorbing miR-374b-5p in HCC cells. More important, SMG1 knockdown reverses the suppressive function of MAGI2-AS3 in HCC cell processes. Taken together, we reveal a functional MAGI2-AS3/miR-374b-5p/SMG1 axis that suppresses HCC progression, potently suggesting a new road for HCC treatment. 相似文献
2.
《生物化学与生物物理学报:疾病的分子基础》2022,1868(12):166539
Muscone is the main active compound of Moschus. In this paper, the cardioprotective effect of Muscone on acute myocardial ischemia (AMI) rats and its potential mechanisms were investigated. AMI rat models were established to evaluate the protective effect and antioxidative function of Muscone on the hearts. Moreover, Western blot analysis was conducted to quantify the phosphorylated PI3K and AKT levels in PI3K/Akt pathway for further investigating the mechanism of Muscone. Results showed that Muscone could markedly lessen the infarct size and myocardial injury, improve cardiac function, inhibit cardiomyocyte apoptosis and down-regulate serum reactive oxygen species level as indicated by the decreased MDA, BNP and c-TnI activities and the increased SOD, GSH-px, CAT activities and the expression of Bax protein. In addition, it was revealed that Muscone notably promoted the phosphorylation of PI3K and AKT. These findings denote that Muscone exerts a protective effect in heart via inhibition of oxidative stress and apoptosis, offering new insights into the treatment of CHD and the clinical application of Muscone. 相似文献
3.
Shen Sheng Wang Jiwen Zhang Dexiang Zheng Bohao Wang Yueqi Liu Han 《Bioscience, biotechnology, and biochemistry》2013,77(12):2257-2264
ABSTRACTGallbladder carcinoma (GBC) is a highly lethal malignancy of the gastrointestinal tract. Despite extensive research, the underlying molecular mechanism of GBC remains largely unclear. Deleted in malignant brain tumors 1 (DMBT1) is low-expression during cancer progression and as a potential tumor-suppressor gene in various types of cancer. However, its role in Gallbladder cancer remains poorly understood. Here, we found that DMBT1 was significantly low-expression and deletion of copy number in GBC tissues by qRT-PCR and Western blot. Overexpression of DMBT1 impaired survival, promoted apoptosis in GBC cells in vitro, and inhibited tumor progression in vivo. Further study of underlying mechanisms demonstrated that DMBT1 combined with PTEN which could stabilize PTEN protein, resulting in inhibiting the activation of PI3K/AKT signaling pathway. Our study revealed a new sight of DMBT1 as a tumor-suppressor gene on the PI3K/AKT pathway in GBC, which may be a potential therapeutic target for improving treatment. 相似文献
4.
Haijin Huang Yan-Zhi Bu Xiao-Yu Zhang Juan Liu Li-Yao Zhu Yong Fang 《Journal of cellular physiology》2019,234(5):6116-6124
Long noncoding RNAs (lncRNAs) have been demonstrated to play significant roles in hepatocellular carcinoma (HCC) tumor progression. LINC01433 has been implicated in the progression of lung cancer. However, its biological role in HCC remains poorly understood. In our current study, we focused on the detailed mechanism of LINC01433 in HCC development. First, it was exhibited that LINC01433 was remarkably elevated in HCC cells, which indicated that LINC01433 was involved in HCC. Then, knockdown of LINC01433 was able to restrain HCC cell proliferation and cell colony formation and greatly induced cell apoptosis. On the contrary, overexpression of LINC01433 promoted HCC cell proliferation, increased cell colony formation, and enhanced cell invasion capacity. Subsequently, we found that miR-1301 was remarkably decreased in HCC cells, and it can serve as a target of LINC01433 according to bioinformatics analysis. In addition, the binding correlation between them was validated by performing RNA pull-down experiments and RIP assay. Moreover, STAT3 was predicted and validated as a target of miR-1301, and it was shown that miR-1301 mimics significantly suppressed STAT3 in HCC cells. Finally, in vivo models were established, and the results demonstrated that silencing of LINC01433 could repress HCC development through modulating miR-1301 and STAT3. Taken together, these results indicated in our study that LINC01433 participated in HCC progression through modulating the miR-1301/STAT3 axis and it might act as a novel biomarker in HCC diagnosis and treatment. 相似文献
5.
Li-Hua Luo Min Jin Lan-Qing Wang Guo-Jie Xu Zhen-Yu Lin Dan-Dan Yu Sheng-Li Yang Rui-Zhi Ran Gang Wu Tao Zhang 《Journal of cellular physiology》2020,235(9):6154-6166
Long noncoding RNAs (lncRNAs) have been reported to dysregulate and involve in the pathology of hepatocellular carcinoma (HCC). Nonetheless, the functional role of lncRNA T cell leukemia/lymphoma 6 (TCL6) and its underlying mechanism in HCC remain unclear. Herein, we analyzed the expression of TCL6 and elucidated its mechanistic involvement in HCC. Bioinformatics analyses indicated TCL6 was evidently downregulated in HCC tissues compared with normal controls. TCL6 was downregulated while microRNA-106a-5p (miR-106a-5p) was upregulated in HCC cell lines. Moreover, knockdown or overexpression of TCL6 significantly raised or diminished the expression level of miR-106a-5p in HCC cells, similar to the effect of miR-106a-5p on TCL6 expression. Functionally, TCL6 inhibited the proliferative, migratory, and invasive potentials of HCC cells as analyzed by cell counting kit-8, scratch wound healing, and transwell assays, respectively. Conversely, miR-106a-5p exerted an opposite effect on the proliferative, migratory, and invasive potentials of HCC. RNA immune precipitation and luciferase reporter assays revealed TCL6 directly bound to miR-106a-5p and luciferase reporter assay verified phosphatase and tensin homolog (PTEN) was a target gene of miR-106a-5p. Mechanistically, TCL6 knockdown evidently reduced PTEN expression at both messenger RNA and protein levels, and miR-106a-5p inhibitor partially rescued this reduction effect in HCC cells. Additionally, western blot assays demonstrated miR-106a-5p downregulation or TCL6 overexpression promoted the protein level of PTEN, and suppressed the phosphorylation level of AKT, the protein level of phosphatidylinositol 3-kinase (PI3K). Collectively, these results revealed TCL6 as a tumor-suppressive lncRNA regulates PI3K/AKT signaling pathway via directly binding to miR-106a-5p in HCC. This mechanism provides a theoretical basis for HCC pathogenesis and a potential therapeutic strategy for HCC treatment. 相似文献
6.
LncRNAs exhibit crucial roles in various pathological diseases, including hepatocellular carcinoma (HCC). Therefore, it is significant to recognize the dysregulated lncRNAs in HCC progression. Recently, LINC01133 has been identified in several tumors. However, the biological role of LINC01133 in HCC remains poorly understood. Currently, we focused on the function of LINC01133 in HCC development. We observed that LINC01133 was significantly increased in HCC cells including HepG2, Hep3B, MHCC-97L, SK-Hep-1, and MHCC-97H cells compared with the normal human liver cell line HL-7702. In addition, PI3K/AKT signaling was highly activated in HCC cells. Knockdown of LINC01133 was able to inhibit HCC cell proliferation, cell colony formation, cell apoptosis, and blocked cell cycle arrest in the G1 phase. For another, downregulation of LINC01133 repressed HCC cell migration and invasion. Subsequently, the PI3K/AKT signaling pathway was strongly suppressed by silence of LINC01133 in Hep3B and HepG2 cells. Then, in vivo tumor xenografts models were established using Hep3B cells to explore the function of LINC01133 in HCC progression. Consistently, our study indicated that knockdown of LINC01133 dramatically repressed HCC tumor progression through targeting the PI3K/AKT pathway in vivo. Taken these together, we revealed that LINC01133 contributed to HCC progression by activating the PI3K/AKT pathway. 相似文献
7.
Zhen Zhang Xin Zheng Jiaxin Li Jutao Duan Lihua Cui Lei Yang Lanqiu Zhang Qi Zhang Ximo Wang 《Journal of cellular biochemistry》2019,120(7):11517-11524
As a key regulator of the ubiquitin-proteasome system, ubiquitin protein ligase E3 component N-recognin 5 (UBR5) plays an important role in various cancers. In this study, our results showed for the first time that UBR5 was overexpressed in gallbladder cancer (GBC) tumor tissues. UBR5 overexpression was significantly associated with tumor size, histological and tumor differentiation. UBR5 overexpression was also associated with poor prognosis in patients with GBC. The knockdown of UBR5 remarkably inhibited the cell proliferation and colony formation of GBC-Shandong (SD) cells in vitro and in vivo. UBR5 potentially increases the level of protein kinase B phosphorylation via the degradation of phosphatase and tensin homolog, which contributes to tumor growth in GBC. UBR5 may be an important biomarker for predicting the prognosis of patients with GBC. 相似文献
8.
Li Shuangda Qi Yu Huang Yiran Guo Yanru Huang Tong Jia Li 《Journal of physiology and biochemistry》2021,77(4):667-682
Journal of Physiology and Biochemistry - Accumulating evidence suggests cancer-derived exosomes play an important role in promoting angiogenesis. Long noncoding RNA small nucleolar RNA host gene 16... 相似文献
9.
The fucosyltransferase (FUT) family is the key enzymes in cell-surface antigen synthesis during various biological processes such as tumor multidrug resistance (MDR). The aim of this work was to analyze the alteration of FUTs involved in MDR in human hepatocellular carcinoma (HCC) cell lines. Using mass spectrometry (MS) analysis, the composition profiling of fucosylated N-glycans differed between drug-resistant BEL7402/5-FU (BEL/FU) cells and the sensitive line BEL7402. Further analysis of the expressional profiles of the FUT family in three pairs of parental and chemoresistant human HCC cell lines showed that FUT4, FUT6 and FUT8 were predominant expressed in MDR cell lines. The altered levels of FUT4, FUT6 and FUT8 were responsible for changed drug-resistant phenotypes of BEL7402 and BEL/FU cells both in vitro and in vivo. In addition, regulating FUT4, FUT6 or FUT8 expression markedly modulated the activity of the phosphoinositide 3 kinase (PI3K)/Akt signaling pathway and MDR-related protein 1 (MRP1) expression. Inhibition of the PI3K/Akt pathway by its specific inhibitor wortmannin, or by Akt small interfering RNA (siRNA), resulted in decreased MDR of BEL/FU cells, partly through the downregulation of MRP1. Taken together, our results suggest that FUT4-, FUT6- or FUT8-mediated MDR in human HCC is associated with the activation of the PI3K/Akt pathway and the expression of MRP1, but not of P-gp, indicating a possible novel mechanism by which the FUT family regulates MDR in human HCC. 相似文献
10.
11.
Tingting Yao Rongbiao Lu Jun Zhang Xingyu Fang Li Fan Chunxian Huang Rongchun Lin Zhongqiu Lin 《Journal of cellular physiology》2019,234(6):9605-9615
Cervical cancer is the most common cause of female cancer-related mortality worldwide. Decreased expression of long noncoding RNA growth arrest-specific 5 (GAS5) is found in human cervical cancer tissues and associated with poor prognosis. However, the studies on associations between GAS5 level and malignant phenotypes, as well as sensitivity to chemotherapeutic drug in cervical cancer cells are limited. In this study, overexpression of GAS5 in cervical cancer cells resulted in prohibited cell proliferation and colony formation, which were promoted by siGAS5. Enhanced GAS5 increased cell percentage in the G0/G1 phase and decreased cells percentage in the S phase, whereas reduced expression did not. The malignant behaviors of cervical cancer cells, manifested by cell migration and invasion, could be weakened by the GAS5 overexpression and enhanced by siGAS5. Furthermore, in cisplatin-induced cell, overexpression of GAS5 reduced cells viability and enhanced apoptosis, whereas in cells transfected with siGAS5, apoptosis eliminated. We have reported the upregulation of microRNA-21 (miR-21) and its oncogenetic roles in cervical cancer previously. In this study, we found the negative relationship between the GAS5 and miR-21. Moreover, the decrease of miR-21 associated proteins phosphorylated STAT3 and E2F3 was seen in GAS5 overexpressed cells, both of which could be increased by siGAS5. The GAS5 deficiency also reduced miR-21 target proteins TIMP3 and PDCD4 expressions. Taken together, the GAS5 expression level is inversely associated with malignancy, but positively associated with sensitivity to cisplatin-induced apoptosis, suggesting that GAS5 could be a biomarker of cisplatin-resistance in clinical therapy of human cervical cancer. 相似文献
12.
13.
Long non-coding RNAs (lncRNAs) are a class of regulatory noncoding RNAs. Emerging evidence highlights the critical roles of lncRNAs in the progression of hepatocellular carcinoma (HCC). Although many lncRNAs have been identified in the development of HCC, the association between DiGeorge syndrome critical region gene 5 (DGCR5) and HCC remains unclear. In the current study, we focused on the biological role of DGCR5 in HCC. We observed that DGCR5 was decreased in HCC cells, including SMCC7721, Hep3B, HepG2, MHCC-97L, MHCC-97H, and SNU449 hepatocellular carcinoma cells, compared with the normal human liver cell line THLE-3 normal human liver cells. In addition, DGCR5 overexpression could repress HCC cell growth, migration, and invasion considerably. Increasing studies have indicated the interactions between lncRNAs and microRNAs. MicroRNAs are endogenous small noncoding RNAs and they can play important roles in tumorigenesis. MicroRNA 346 (miR-346) has been demonstrated in various human cancer types, including HCC. MiR-346 was found to be increased in HCC cells and DGCR5 can act as a sponge of miR-346 to modulate the progression of HCC. The binding correlation between DGCR5 and miR-346 was validated in our research. Subsequently, Krüppel-like factor 14 (KLF14) was predicted as a downstream target of miR-346 and miR-346 can induce the development of HCC by inhibiting KLF14. Finally, we proved that DGCR5 can rescue the inhibited levels of KLF14 repressed by miR-346 mimics in MHCC-97H and Hep3B cells. Taken together, it was indicated in our study that DGCR5 can restrain the progression of HCC through sponging miR-346 and modulating KLF14 in vitro. 相似文献
14.
Ronghui Zhang Ping Tang Fang Wang Ying Xing Zhongxing Jiang Shaoqian Chen Xiaoli Meng Linxiang Liu Weijie Cao Huayan Zhao Ping Ma Yanli Chen Chao An Ling Sun 《Journal of cellular biochemistry》2019,120(3):4423-4432
Dysregulation of microRNAs is closely implicated in the initiation and progression of human cancers including acute myeloid leukemia (AML). Though miR-139-5p was reported to be a potent tumor suppressor in adult AML, its underlying molecular mechanism in AML remains to be further defined. Herein, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis were conducted to determine the expressions of miR-139-5p and tetraspanin3 (Tspan3) in AML patients and cells. Luciferase reporter assay, qRT-PCR, and Western blot analysis were carried out to detect the interaction between miR-139-5p and Tspan3. Cell proliferation, cell cycle distribution, invasion, and migration were evaluated by cell counting kit-8, flow cytometry, transwell invasion, and migration assays, respectively. Western blot analysis was conducted to determine phosphorylated-protein kinase B (Akt) and Akt levels. We found that a significant reduction in miR-139-5p expression and a prominent increase in Tspan3 expression were observed in AML patients and cells. Tspan3 was confirmed as a direct target of miR-139-5p and was negatively modulated by miR-139-5p. Rescue experiments showed that overexpression of miR-139-5p constrained cell proliferation, invasion and migration capabilities, and induced cell cycle arrest at the S phase in AML cells, which were partially reversed by Tspan3 overexpression. In addition, we found that miR-139-5p suppressed the phosphoinositide 3-kinase (PI3K)/Akt pathway in AML cells by targeting Tspan3. In conclusion, our study concluded that miR-139-5p suppressed the leukemogenesis in AML cells by targeting Tspan3 through inactivation of the PI3K/Akt pathway, providing a better understanding of AML progression. 相似文献
15.
Yelin Wang Chen Hu Jun Cheng Binquan Chen Qinghong Ke Zhen Lv Jian Wu Yanfeng Zhou 《Biochemical and biophysical research communications》2014
Accumulating evidences have proved that dysregulation of microRNAs (miRNAs) is involved in cancer initiation and progression. In this study, we showed that miRNA-145 level was significantly decreased in hepatocellular cancer (HCC) tissues and cell lines, and its low expression was inversely associated with the abundance of insulin receptor substrate 1 (IRS1), a key mediator in oncogenic insulin-like growth factor (IGF) signaling. We verified IRS1 as a direct target of miR-145 using Western blotting and luciferase reporter assay. Further, the restoration of miR-145 in HCC cell lines suppressed cancer cell growth, owing to down-regulated IRS1 expression and its downstream Akt/FOXO1 signaling. Our results demonstrated that miR-145 could inhibit HCC through targeting IRS1 and its downstream signaling, implicating the loss of miR-145 regulation may be a potential molecular mechanism causing aberrant oncogenic signaling in HCC. 相似文献
16.
17.
18.
Xiangyu Qin Lingyu Zhou Yaojie Shen Yuwei Gu Jia Tang Junwei Qian An Cui Mingquan Chen 《Journal of cellular and molecular medicine》2023,27(24):4080-4092
Circular RNAs play an important role in the development of various malignancies, including hepatocellular carcinoma (HCC). Nevertheless, the role of Hsa_circ_0093335 (circ0093335) in HCC has not yet been explored. To investigate the biological effects and molecular mechanisms of circ0093335 on HCC. Circ0093335 expression was detected in HCC cells and clinical specimens using qRT-PCR. The association between circ0093335 expression and HCC patients' clinical characteristics was determined using SPSS. The role of circ0093335 in HCC was estimated by overexpression and knockdown experiments in vitro and in vivo. qRT-PCR, nucleoplasma separation assay, FISH assay, RIP, dual luciferase reporter assay and rescue assay were used to validate the regulatory effect of circ0093335 on miR-338-5p. The study findings showed that circ0093335 was upregulated in HCC. High circ0093335 expression was linked with the tumour-node-metastasis stage and microvascular tumour invasion. circ0093335 is greatly involved in HCC cell proliferation, aggressive ability and mouse tumour growth, according to many in vitro and in vivo tests. Mechanistically, circ0093335 downregulated miR-338-5p expression by sponging, consequently promoting HCC progression. Our research indicated that circ0093335 might be a target for HCC therapy since it promotes tumour progression by acting as a miR-338-5p ‘sponge’. 相似文献
19.
Background
MYO18B has been identified as a novel tumor suppressor gene in several cancers. However, its specific roles in the progression of hepatocellular carcinoma (HCC) has not been well defined.Methods
We firstly identified the expression and prognostic values of MYO18B in HCC using TCGA cohort and our clinical data. Then, MYO18B knockdown by RNA inference was implemented to investigate the effects of MYO18B on HCC cells. Quantitative RT-PCR and Western blot were used to determine gene and protein expression levels. CCK-8 and colony formation assays were performed to examine cell proliferation capacity. Wound healing and transwell assays were used to evaluate the migration and invasion of HepG2 cells.Results
MYO18B was overexpressed and correlated with poor prognosis in HCC. MYO18B expression was an independent risk factor for overall survival. Knockdown of MYO18B significantly inhibited the proliferation, migration and invasion of HepG2 cells. Meanwhile, MYO18B knockdown could effectively suppress the phosphorylation of PI3K, AKT, mTOR and P70S6K, suggesting that MYO18B might promote HCC progression by targeting PI3K/AKT/mTOR signaling pathway.Conclusions
MYO18B promoted tumor growth and migration via the activation of PI3K/AKT/mTOR signaling pathway. MYO18B might be a promising target for clinical intervention of HCC.20.
The discovery of microRNAs (miRNAs) provided a new avenue for early diagnosis and treatment of GC. MiR-137 has been reported to be under-expressed and involved in various cell processes. However, the role of miR-137 in GC is less known. In this study, we show that miR-137 is under-expressed in GC and functions as a tumor suppressor through targeting Cyclooxygenase-2 (Cox-2), which subsequently suppresses the activation of PI3K/AKT signaling pathway both in vitro and in vivo. Moreover, restored Cox-2 expression partially abolished the tumor suppressive effects of miR-137 in GC cells, suggesting miR-137 may suppress GC carcinogenesis by targeting Cox-2. 相似文献