首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This invited review discusses the latest advances stem cell biology, tissue engineering and the transition from bench to bedside. An overview is presented as to which the best cell source might be for cell therapy and tissue engineering applications, best biomaterials currently available and the challenges the field faces to translate basic research into therapies for a large number of human diseases.  相似文献   

2.
Pulmonary disease is a worldwide public health problem that reduces the life quality and increases the need for hospital admissions as well as the risk of premature death. A common problem is the significant shortage of lungs for transplantation as well as patients must also take immunosuppressive drugs for the rest of their lives to keep the immune system from attacking transplanted organs. Recently, a new strategy has been proposed in the cellular engineering of lung tissue as decellularization approaches. The main components for the lung tissue engineering are: (1) A suitable biological or synthetic three-dimensional (3D) scaffold, (2) source of stem cells or cells, (3) growth factors required to drive cell differentiation and proliferation, and (4) bioreactor, a system that supports a 3D composite biologically active. Although a number of synthetic as well biological 3D scaffold suggested for lung tissue engineering, the current favorite scaffold is decellularized extracellular matrix scaffold. There are a large number of commercial and academic made bioreactors, the favor has been, the one easy to sterilize, physiologically stimuli and support active cell growth as well as clinically translational. The challenges would be to develop a functional lung will depend on the endothelialized microvascular network and alveolar–capillary surface area to exchange gas. A critical review of the each components of lung tissue engineering is presented, following an appraisal of the literature in the last 5 years. This is a multibillion dollar industry and consider unmet clinical need.  相似文献   

3.
4.
组织工程技术为修复病损的组织和器官提供了一种新的途径,在组织工程中,细胞支架起着支撑细胞生长、引导组织再生、控制组织结构和释放活性因子等作用。针对电纺技术的新发展和细胞支架的新理念,综述了国内外利用电纺技术制备细胞支架的工艺条件、制备方法、组织细胞培养等方面的研究进展,并结合作者所在研究团队的研究工作提出了对未来电纺技术在组织工程中应用的研究重点和发展方向的认识。  相似文献   

5.
Scaffold‐based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano‐/microfibrous scaffold, made from a mixture of chitosan–ß‐glycerol phosphate–gelatin (chitosan–GP–gelatin) using a standard electrospinning set‐up was developed. Gelatin–acid acetic and chitosan ß‐glycerol phosphate–HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin‐only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non‐toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell‐based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan–GP–gelatin fibrous scaffolds for engineering three‐dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 163–175, 2016.  相似文献   

6.
Both volumetric muscle loss (VML) and muscle degenerative diseases lead to an important decrease in skeletal muscle mass, condition that nowadays lacks an optimal treatment. This issue has driven towards an increasing interest in new strategies in tissue engineering, an emerging field that can offer very promising approaches. In addition, the discovery of induced pluripotent stem cells (iPSCs) has completely revolutionized the actual view of personalized medicine, and their utilization in skeletal muscle tissue engineering could, undoubtedly, add myriad benefits. In this review, we want to provide a general vision of the basic aspects to consider when engineering skeletal muscle tissue using iPSCs. Specifically, we will focus on the three main pillars of tissue engineering: the scaffold designing, the selection of the ideal cell source and the addition of factors that can enhance the resemblance with the native tissue.  相似文献   

7.
Nanotechnology is a fast growing area of research that aims to create nanomaterials or nanostructures development in stem cell and tissue-based therapies. Concepts and discoveries from the fields of bio nano research provide exciting opportunities of using stem cells for regeneration of tissues and organs. The application of nanotechnology to stem-cell biology would be able to address the challenges of disease therapeutics. This review covers the potential of nanotechnology approaches towards regenerative medicine. Furthermore, it focuses on current aspects of stem- and tissue-cell engineering. The magnetic nanoparticles-based applications in stem-cell research open new frontiers in cell and tissue engineering.  相似文献   

8.
This article demonstrates the application of time‐lapsed imaging and image processing to inform the supercritical processing of tissue scaffolds that are integral to many regenerative therapies. The methodology presented provides online quantitative evaluation of the complex process of scaffold formation in supercritical environments. The capabilities of the developed system are demonstrated through comparison of scaffolds formed from polymers with different molecular weight and with different venting times. Visual monitoring of scaffold fabrication enabled key events in the supercritical processing of the scaffolds to be identified including the onset of polymer plasticization, supercritical points and foam formation. Image processing of images acquired during the foaming process enabled quantitative tracking of the growing scaffold boundary that provided new insight into the nature of scaffold foaming. Further, this quantitative approach assisted in the comparison of different scaffold fabrication protocols. Observed differences in scaffold formation were found to persist, post‐fabrication as evidenced by micro x‐ray computed tomography (μ x‐ray CT) images. It is concluded that time‐lapsed imaging in combination with image processing is a convenient and powerful tool to provide insight into the scaffold fabrication process. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
Stem cell‐based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial‐based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell‐based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554–567, 2016  相似文献   

10.
Recent studies suggest that organ decellularization is a promising approach to facilitate the clinical application of regenerative therapy by providing a platform for organ engineering. This unique strategy uses native matrices to act as a reservoir for the functional cells which may show therapeutic potential when implanted into the body. Appropriate cell sources for artificial livers have been debated for some time. The desired cell type in artificial livers is primary hepatocytes, but in addition, other supportive cells may facilitate this stem cell technology. In this context, the use of mesenchymal stem cells (MSC) is an option meeting the criteria for therapeutic organ engineering. Ideally, supportive cells are required to (1) reduce the hepatic cell mass needed in an engineered liver by enhancing hepatocyte function, (2) modulate hepatic regeneration in a paracrine fashion or by direct contact, and (3) enhance the preservability of parenchymal cells during storage. Here, we describe enhanced hepatic function achieved using a strategy of sequential infusion of cells and illustrate the advantages of co-cultivating bone marrow-derived MSCs with primary hepatocytes in the engineered whole-liver scaffold. These co-recellularized liver scaffolds colonized by MSCs and hepatocytes were transplanted into live animals. After blood flow was established, we show that expression of adhesion molecules and proangiogenic factors was upregulated in the graft.  相似文献   

11.
《Organogenesis》2013,9(2):268-277
Recent studies suggest that organ decellularization is a promising approach to facilitate the clinical application of regenerative therapy by providing a platform for organ engineering. This unique strategy uses native matrices to act as a reservoir for the functional cells which may show therapeutic potential when implanted into the body. Appropriate cell sources for artificial livers have been debated for some time. The desired cell type in artificial livers is primary hepatocytes, but in addition, other supportive cells may facilitate this stem cell technology. In this context, the use of mesenchymal stem cells (MSC) is an option meeting the criteria for therapeutic organ engineering. Ideally, supportive cells are required to (1) reduce the hepatic cell mass needed in an engineered liver by enhancing hepatocyte function, (2) modulate hepatic regeneration in a paracrine fashion or by direct contact, and (3) enhance the preservability of parenchymal cells during storage. Here, we describe enhanced hepatic function achieved using a strategy of sequential infusion of cells and illustrate the advantages of co-cultivating bone marrow-derived MSCs with primary hepatocytes in the engineered whole-liver scaffold. These co-recellularized liver scaffolds colonized by MSCs and hepatocytes were transplanted into live animals. After blood flow was established, we show that expression of adhesion molecules and proangiogenic factors was upregulated in the graft.  相似文献   

12.
13.
Stem cell-based composite tissue constructs for regenerative medicine   总被引:4,自引:0,他引:4  
A major task of contemporary medicine and dentistry is restoration of human tissues and organs lost to diseases and trauma. A decade-long intense effort in tissue engineering has provided the proof of concept for cell-based replacement of a number of individual tissues such as the skin, cartilage, and bone. Recent work in stem cell-based in vivo restoration of multiple tissue phenotypes by composite tissue constructs such as osteochondral and fibro-osseous grafts has demonstrated probable clues for bioengineered replacement of complex anatomical structures consisting of multiple cell lineages such as the synovial joint condyle, tendon-bone complex, bone-ligament junction, and the periodontium. Of greater significance is a tangible contribution by current attempts to restore the structure and function of multitissue structures using cell-based composite tissue constructs to the understanding of ultimate biological restoration of complex organs such as the kidney or liver. The present review focuses on recent advances in stem cell-based composite tissue constructs and attempts to outline challenges for the manipulation of stem cells in tailored biomaterials in alignment with approaches potentially utilizable in regenerative medicine of human tissues and organs.  相似文献   

14.
Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis.  相似文献   

15.
Gene transfer strategies in tissue engineering   总被引:1,自引:2,他引:1  
Aiming for regeneration of severed or lost parts of the body, the combined application of gene therapy and tissue engineering has received much attention by regenerative medicine. Techniques of molecular biology can enhance the regenerative potential of a biomaterial by co-delivery of therapeutic genes, and several different strategies have been used to achieve that goal. Possibilities for application are many-fold and have been investigated to regenerate tissues such as skin, cartilage, bone, nerve, liver, pancreas and blood vessels. This review discusses advantages and problems encountered with the different gene delivery strategies as far as they relate to tissue engineering, analyses the positive aspects of polymeric gene delivery from matrices and discusses advances and future challenges of gene transfer strategies in selected tissues.  相似文献   

16.
17.
This review summarizes recent efforts to create vascularized bone tissue in vitro and in vivo through the use of cell-based therapy approaches. The treatment of large and recalcitrant bone wounds is a serious clinical problem, and in the United States approximately 10% of all fractures are complicated by delayed union or non-union. Treatment approaches with the use of growth factor and gene delivery have shown some promise, but results are variable and clinical complications have arisen. Cell-based therapies offer the potential to recapitulate key components of the bone-healing cascade, which involves concomitant regeneration of vasculature and new bone tissue. For this reason, osteogenic and vasculogenic cell types have been combined in co-cultures to capitalize on the function of each cell type and to promote heterotypic interactions. Experiments in both two-dimensional and three-dimensional systems have provided insight into the mechanisms by which osteogenic and vasculogenic cells interact to form vascularized bone, and these approaches have been translated to ectopic and orthotopic models in small-animal studies. The knowledge generated by these studies will inform and facilitate the next generation of pre-clinical studies, which are needed to move cell-based orthopaedic repair strategies into the clinic. The science and application of cytotherapy for repair of large and ischemic bone defects is developing rapidly and promises to provide new treatment methods for these challenging clinical problems.  相似文献   

18.
组织工程技术已被普遍认为是解决组织、器官缺损修复与功能重建的有效手段,它的飞速发展依赖于细胞学、材料学、工程学、临床医学等多学科的交叉渗透.作为组织工程的三大核心,种子细胞、生物材料、组织构建各方面的突破,为组织工程技术的发展奠定了基础.组织工程国家工程中心近年来围绕上述核心开展了系列研究,通过研究胚胎干细胞、成体干细胞、同种异体干细胞、以及发育同源细胞替代的探索,为解决种子细胞来源问题提供了多种选择;生物支架材料的开发,为细胞增殖分化、组织再生提供理想的支持与空间,而生物反应器的开发与应用,进一步提高了组织构建技术,为促进组织的体外形成、重塑和功能成熟创造了条件.在此基础上,开展了大动物体内组织构建和缺损修复的研究,形成了以应用为目标的研究特色,并成功将部分技术应用于临床治疗.本文将对组织工程国家工程中心已有进展做简单介绍并对面临的挑战进行分析.  相似文献   

19.
Albumin, the most abundant plasma protein in mammals, is a versatile and easily obtainable biomaterial. It is pH and temperature responsive, dissolvable in high concentrations and gels readily in defined conditions. This versatility, together with its inexpensiveness and biocompatibility, makes albumin an attractive biomaterial for biomedical research and therapeutics. So far, clinical research in albumin has centered mainly on its use as a carrier molecule or nanoparticle to improve drug pharmacokinetics and delivery to target sites. In contrast, research in albumin-based hydrogels is less established albeit growing in interest over recent years. In this minireview, we report current literature and critically discuss the synthesis, mechanical properties, biological effects and uses, biodegradability and cost of albumin hydrogels as a xeno-free, customizable, and transplantable construct for tissue engineering and regenerative medicine.  相似文献   

20.
Treatment of esophageal cancer often requires surgical procedures that involve removal. The current approaches to restore esophageal continuity however, are known to have limitations which may not result in full functional recovery. In theory, using a tissue engineered esophagus developed from the patient's own cells to replace the removed esophageal segment can be the ideal method of reconstruction. One of the key elements involved in the tissue engineering process is the scaffold which acts as a template for organization of cells and tissue development. While a number of scaffolds range from traditional non-biodegradable tubing to bioactive decellularized matrix have been proposed to engineer the esophagus in the past decade, results are still not yet favorable with many challenges relating to tissue quality need to be met improvements. The success of new esophageal tissue formation will ultimately depend on the success of the scaffold being able to meet the essential requirements specific to the esophageal tissue. Here, the design of the scaffold and its fabrication approaches are reviewed. In this paper, we review the current state of development in bioengineering the esophagus with particular emphasis on scaffold design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号