首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intestinal barrier dysfunction often occurs in various acute or chronic pathological conditions and has been identified as an important clinical problem. Herein, we explored the biological role and molecular mechanism of Polo-like kinase 1 (PLK1) and differentiation antagonizing non-protein coding RNA (DANCR) in intestinal barrier dysfunction caused by sepsis. RT-qPCR analysis was used to examine PLK1, miR-1306-5p, and DANCR expression in NCM460 cells after LPS treatment. TUNEL assay and Western blot analysis were performed to explore PLK1 function in cell apoptosis and intestinal barrier in vitro. Hematoxylin and eosin staining, Western blot analysis, and TUNEL assay were used to investigate DANCR function in the intestinal barrier and cell apoptosis in vivo. The interaction between miR-1306-5p and PLK1 (or DANCR) was validated by luciferase reporter assay. As a result, PLK1 overexpression decreased cell apoptosis and promoted intestinal barrier function. Moreover, DANCR was validated as a sponge of miR-1306-5p to target PLK1. In addition, we found that DANCR overexpression decreased intestinal mucosal permeability and colon mucosa epithelial cell apoptosis in vivo. Conclusively, DANCR improved intestinal barrier dysfunction and alleviated epithelial injury by targeting the miR-1306-5p/PLK1 axis in sepsis.  相似文献   

2.
Shin S  Moon KC  Park KU  Ha E 《Biochimie》2012,94(6):1431-1436
MicroRNAs (miRNAs) are endogenous non-coding small RNAs that have emerged as one of the central players of gene expression regulation. Endothelial cell apoptosis plays a fundamental role in the development of atherosclerosis. This study was designed to determine the effect of miR-513a-5p on apoptosis of human umbilical vein endothelial cells (HUVECs). HUVECs were treated with tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) and miR-513a-5p expression levels were determined. MiR-513a-5p target gene indentification, validation, and signalling pathways were investigated. Treatment of HUVECs with TNF-α and LPS up-regulated miR-513a-5p expressions more than 2-fold compared to control (P < 0.05). Inhibition of miR-513a-5p by antisense (AS) miR-513a-5p reversed TNF-α and LPS induced apoptosis (P < 0.01). Transfection of HUVECs with miR-513a-5p mimics also induced apoptosis (P < 0.01). Treatment of HUVECs with TNF-α and LPS attenuated X-linked inhibitor of apoptosis (XIAP) while increased caspase-3 expression, poly ADP-ribose polymerase (PARP) cleavage, and p53 expression. These effects were reversed by inhibition of miR-513a-5p. Of those miR-513a-5p candidate target genes, we identified and validated XIAP as a miR-513a-5p target gene. Targeting of the XIAP 3′-untranslated region by miR-513a-5p using luciferase reporter assay resulted in attenuated luciferase activity. Transfection of HUVECs with AS miR-513a-5p increased XIAP protein expression while miR-513a-5p mimics attenuated XIAP expression. These results together suggest that miR-513a-5p mediates TNF-α and LPS induced apoptosis via downregulation of XIAP in HUVECs.  相似文献   

3.
《Genomics》2022,114(3):110360
This research focused on novel molecular mechanisms underlying microRNA (miR)-182-5p in ulcerative colitis (UC). Colon tissues were obtained from UC patients, and dextrose sodium sulfate (DSS)-induced mouse and interleukin-1β (IL-1β)-induced Caco-2 cell models were generated. Then, miR-182-5p, SMARCA5, and the Wnt/β-catenin signaling pathway were altered in IL-1β-stimulated Caco-2 cells and DSS-treated mice to assess their function. MiR-182-5p and SMARCA5 were upregulated and DNMT3A, β-catenin, and Cyclin D1 were downregulated in UC patients, IL-1β-stimulated Caco-2 cells, and DSS-treated mice. Mechanistically, miR-182-5p targeted DNMT3A to upregulate SMARCA5, thus blocking the Wnt/β-catenin signaling pathway. Moreover, SMARCA5 silencing or Wnt/β-catenin signaling pathway activation repressed apoptosis and augmented proliferation and epithelial barrier function of IL-1β-stimulated Caco-2 cells. SMARCA5 silencing annulled the impacts of miR-182-5p overexpression on IL-1β-stimulated Caco-2 cells. SMARCA5 silencing or miR-182-5p inhibition ameliorated intestinal barrier dysfunction in DSS-treated mice. Collectively, miR-182-5p aggravates UC by inactivating the Wnt/β-catenin signaling pathway through DNMT3A-mediated SMARCA5 methylation.  相似文献   

4.
Onco-miR-182-5p has been reported to be over-expressed in bladder cancer (BC) tissues however a detailed functional analysis of miR-182-5p has not been carried out in BC. Therefore the purpose of this study was to: 1. conduct a functional analysis of miR-182-5p in bladder cancer, 2. assess its usefulness as a tumor marker, 3. identify miR-182-5p target genes in BC. Initially we found that miR-182-5p expression was significantly higher in bladder cancer compared to normal tissues and high miR-182-5p expression was associated with shorter overall survival in BC patients. To study the functional significance of miR-182-5p, we over-expressed miR-182-5p with miR-182-5p precursor and observed that cell proliferation, migration and invasion abilities were increased in BC cells. However cell apoptosis was inhibited by miR-182-5p. We also identified Smad4 and RECK as potential target genes of miR-182-5p using several algorithms. 3′UTR luciferase activity of these target genes was significantly decreased and protein expression of these target genes was significantly up-regulated in miR-182-5p inhibitor transfected bladder cancer cells. MiR-182-5p also increased nuclear beta-catenin expression and while Smad4 repressed nuclear beta-catenin expression. In conclusion, our data suggests that miR-182-5p plays an important role as an oncogene by knocking down RECK and Smad4, resulting in activation of the Wnt-beta-catenin signaling pathway in bladder cancer.  相似文献   

5.
ABSTRACT

Diabetic retinopathy (DR) is a leading cause of new-onset blindness. Recent studies showed that protecting retinal ganglion cells (RGCs) from high glucose-induced injury is a promising strategy for delaying DR. This study is to investigate the role of miR-145-5p in high glucose-induced RGC injury. Here, RGCs were randomly divided into low glucose and high glucose groups. PCR assay showed miR-145-5p was significantly upregulated in high glucose group. Transfection of miR-145-5p inhibitor decreased pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) levels, elevated cell viability and proliferation, as well as suppressed cell apoptosis by ELISA, MTT, EdU proliferation, colony formation and flow cytometry assays, respectively. Moreover, dual-luciferase reporter assay confirmed FGF5 as a target gene of miR-145-5p. FGF5 knockdown could partially reverse the protective effects of miR-145-5p on RGC-5 cells. In conclusion, our results demonstrated that inhibition of miR-145-5p might be a neuroprotective target for diabetes mellitus-related DR.

Abbreviations: DR: diabetic retinopathy; RGCs: retinal ganglion cells; miR-145-5p: microRNA-145-5p; TNF-α: tumor necrosis factor-α; IL-6: interleukin-6; FGF: fibroblast growth factor; ATCC: American Type Culture Collection; WT: wild type; MUT: mutant type  相似文献   

6.
7.
MicroRNAs (miRNAs) are short, non-coding RNAs that regulate the expression of multiple target genes. Dysregulation of miRNAs is common in sepsis. Through microRNA microarray and qRT-PCR we found that the levels of miR-27a, miR-153 and miR-143 are up regulated, while let-7a, miR-218 and miR-129-5p are down regulated in lungs of septic mice. Knocking down of miR-27a down regulates expression levels of TNF-α and IL-6 significantly via reducing the phosphorylation level of NF-κB p65 and inhibiting its DNA binding activity. Furthermore, neutralisation of miR-27a up regulates PPARγ level, down regulates TNF-α expression, relieves pulmonary inflammation and promotes survival of septic mice, which demonstrates that miR-27a plays an important role in regulating inflammatory response in sepsis and provides a potential target for clinical sepsis research and treatment.  相似文献   

8.
The objective of the study is to evaluate the protective effects of human mesenchymal stem cells (hMSCs) modified with miR-138-5p inhibitor against the allergic rhinitis and asthma syndrome (ARAS). MiR-138-5p or negative control was transfected into hMSCs, and fluorescence-activated cell sorting was used to evaluate hMSC surface markers. Quantitative real-time PCR (qRT-PCR) was used to evaluate miR-138-5p, SIRT1, caspase-3, IL-6, IL-1β and TNF-α levels after TNF-α and IL-6 stimulations. hMSCs with or without miR-138-5p inhibition was intranasally administered into ARAS mice (n = 10 each group), followed by monitoring sneezing and nasal rubbing events to evaluate the allergic symptoms. Histamine, ovalbumin-specific IgE, IgG2a, IgG1 and LTC4 release were monitored in the serum and nasal lavage fluid using enzyme-linked immunosorbent assay. Expression of SIRT1 and HMGB1/TLR4 pathway in nasal mucosa was assessed. After miR-138-5p inhibitor transfection, the hMSC lineage was preserved. Binding between SIRT1 and miR-138-4p was observed, and miR-138-5p inhibition led to upregulation of SIRT1. Inhibition of miR-138-5p led to attenuated inflammatory responses of hMSCs upon TNF-α and IL-6 stimulation, and allergic symptoms in mice, as well as histamine and ovalbumin-specific IgG release. hMSCs with miR-138-5p inhibition showed characteristics of activated SIRT1 and inhibited HMGB1/TLR4 pathway. Inhibition of miR-138-5p in hMSCs enhanced its effects in attenuating inflammatory responses and allergic reaction in the ARAS model, which is presumably regulated by SIRT1 and the HMGB1/TLR4 pathway.  相似文献   

9.
While apoptosis plays a significant role in intestinal homeostasis, it can also be pathogenic if overactive during recovery from inflammation. We recently reported that microRNA-24-3p (miR-24-3p) is elevated in the colonic epithelium of ulcerative colitis patients during active inflammation, and that it reduced apoptosis in vitro. However, its function during intestinal restitution following inflammation had not been examined. In this study, we tested the influence of miR-24-3p on mucosal repair by studying recovery from colitis in both novel miR-24-3p knockout and miR-24-3p-inhibited mice. We observed that knockout mice and mice treated with a miR-24-3p inhibitor had significantly worsened recovery based on weight loss, colon length, and double-blinded histological scoring. In vivo and in vitro analysis of miR-24-3p inhibition in colonic epithelial cells revealed that inhibition promotes apoptosis and increases levels of the pro-apoptotic protein BIM. Further experiments determined that silencing of BIM reversed the pro-apoptotic effects of miR-24-3p inhibition. Taken together, these data suggest that miR-24-3p restrains intestinal epithelial cell apoptosis by targeting BIM, and its loss of function is detrimental to epithelial restitution following intestinal inflammation.Subject terms: Apoptosis, Drug delivery  相似文献   

10.
Tooth cementum is a bone-like mineralized tissue and serves as a microbial barrier against invasion and destruction. Cementum is also responsible for tooth stability and defending pulp from outside stimuli, which is formed by cementoblasts. Although it is crucial for periodontal and periapical diseases, the mechanisms underlying the pathophysiological changes of cementoblasts and their inflammatory responses remain unclear. MiR-181b is found to modulate vascular inflammation and endotoxin tolerance. In this study, miR-181b-5p was downregulated in tumor necrosis factor-α (TNF-α)-stimulated cementoblasts, whereas proinflammatory molecules increased. The mouse periapical lesions have similar results, which imitate an inflammatory environment for cementoblasts in vivo. The bioinformatics analysis and dual luciferase reporter assay suggested that miR-181b-5p targeted interleukin-6 (IL-6). Overexpressing miR-181b-5p negatively regulated IL-6 and proinflammatory chemokine. Western blot analysis and luciferase activity reporter assay verified that miR-181b-5p weakened the NF-κB activity. Hence, miR-181b-5p moderated proinflammatory chemokine production by targeting IL-6 in cementoblasts and NF-κB signaling pathway was involved. Furthermore, miR-181b-5p promoted cementoblast apoptosis, which may enhance the resolution of inflammation. Overall, our data revealed that miR-181b-5p was a negative regulator of TNF-α-induced inflammatory responses in cementoblasts.  相似文献   

11.
目的:观察前列腺癌组织及不同前列腺癌细胞系中miR-182的表达,并探讨下调其表达对前列腺癌细胞增殖和凋亡的影响及机制。方法:采用实时荧光定量PCR(q RT-PCR)检测30例前列腺癌组织和30例相应的癌旁组织以及前列腺正常上皮RWPE-1细胞、前列腺癌PC-3、LNCa P和DU145细胞中miR-182的表达,进一步采用Lipfectamine 2000脂质体转染miRNA-182 inhibitor和阴性对照miRNA于PC-3细胞后,通过噻唑蓝(MTT)比色法检测细胞增殖情况,流式细胞术检测细胞凋亡率,免疫印迹(Western blot)法检测转录因子FOXO1、血管内皮生长因子(VEGF)和抑癌基因p53蛋白的表达。结果:miR-182在前列腺癌组织中的表达明显高于癌旁组织(P0.05);miR-182在前列腺癌细胞系PC-3、LNCa P和DU145中的表达均高于前列腺正常上皮细胞RWPE-1(P0.05),其中PC-3细胞中miR-182表达水平最高。转染miRNA-182 inhibitor至PC-3细胞成功下调miR-182表达后,细胞的增殖能力明显受到抑制,细胞凋亡能力明显增强,FOXO1表达水平显著升高,VEGF和p53的表达明显降低,差异均具有统计学意义(P0.05)。结论:miR-182在前列腺癌组织及细胞中呈高表达,下调miR-182的表达可能通过增加FOXO1的表达并减少VEGF和p53的表达,抑制前列腺癌细胞增殖并诱导细胞凋亡。  相似文献   

12.
Tumor necrosis factor α (TNF-α), a pivotal cytokine in sepsis, protects the host against pathogens by promoting an inflammatory response while simultaneously inducing apoptosis of the vascular endothelium. Unfortunately, inhibitors targeting certain components of the TNF-α signaling pathway to reduce cellular apoptosis have failed to translate into clinical applications, partly due to the adverse effects of excessive immunosuppression. In an attempt to discover potential targets in the TNF-α signaling pathway to modulate moderate inflammation and apoptosis during the development of sepsis, we performed a pooled genome-wide CRISPR/Cas9 knockout screen in human umbilical vein endothelial cells (HUVECs). Tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), B-cell lymphoma 2 (BCL2), Bcl2-associated death promoter (BAD), and NLR family member X1 (NLRX1) deficiencies were identified as the effective genetic suppressors of TNF-α cytotoxicity on a list of candidate regulators. CRISPR-mediated NLRX1 knockout conferred cellular resistance to challenge with TNF-α, and NLRX1 could be induced to colocalize with mitochondria following TNF-α stimulation. Thus, our work demonstrates the advantage of genome-scale screening with Cas9 and validates NLRX1 as a potential modulator of TNF-α-induced vascular endothelial apoptosis during sepsis.  相似文献   

13.
14.
BackgroundSeptic acute kidney injury (AKI) is associated with increased morbidity and mortality in critically ill patients. MicroRNA is reportedly involved in sepsis-induced organ dysfunction, while the role of miR-150 in septic AKI remains ambiguous.MethodsQuantitative real-time PCR (qRT-PCR) was carried out to examine miR-150-5p expression in both septic AKI patients and volunteers without septic AKI. Lipopolysaccharide (LPS) was used to treat renal tubular epithelial cell line HK-2 and C57/BL6 mice to establish in vitro and in vivo sepsis-induced AKI models. Cell apoptosis was determined using TdT-mediated dUTP nick end labeling (TUNEL) staining and flow cytometry. Cell viability was tested using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Renal pathological changes were examined via Hematoxylin-Eosin (H&E) staining, and renal function was measured via blood urea nitrogen (BUN) and creatinine (Cre) measurements. The MEKK3/JNK profile and oxidative stress markers (including COX2 and iNOS) were examined by immunoblot analysis, and the expression levels of inflammatory cytokines (TNF-α, IL-6, and IL-1β) and oxidative stress markers (MDA, SOD, and CAT) were evaluated by ELISA.ResultsMiR-150-5p was down-regulated in the serum of patients with septic AKI (compared to healthy volunteers). Moreover, miR-150-5p levels were lower in LPS-treated HK-2 cell lines and in the septic AKI mouse model. Additionally, Stat-3 activation mediated the decrease of miR-150-5p. Functionally, miR-150-5p agomir attenuated LPS-induced apoptosis in HK-2 cells, in addition to renal inflammatory responses and oxidative stress. In contrast, inhibition of miR-150-5p aggravated LPS-induced apoptosis, inflammatory reactions and oxidative stress. Furthermore, miR-150-5p agomir decreased BUN and Scr levels in the septic AKI mice model repressed TNF-α, IL-6 and IL-1β, and up-regulated SOD and CAT down-regulated MDA in the kidney tissues. Moreover, miR-150-5p was identified as a target gene for Stat3, and the overexpression of Stat3 partially promoted the effect of down-regulating miR-150-5p on LPS-induced HK2 cell injury. Mechanistically, the MEKK3/JNK pathway was identified as a functional target of miR-150-5p, and the knockdown of MEKK3 showed protective effects against LPS mediated HK-2 cell apoptosis.ConclusionStat3-mediated miR-150-5p exerted protective effects in sepsis-induced acute kidney injury by regulating the MEKK3/JNK pathway.  相似文献   

15.
The frequent alteration of miRNA expression in many cancers, together with our recent reports showing a robust accumulation of miR-483-3p at the final stage of skin wound healing, and targeting of CDC25A leading to an arrest of keratinocyte proliferation, led us to hypothesize that miR-483-3p could also be endowed with antitumoral properties. We tested that hypothesis by documenting the in vitro and in vivo impacts of miR-483-3p in squamous cell carcinoma (SCC) cells. miR-483-3p sensitized SCC cells to serum deprivation- and drug-induced apoptosis, thus exerting potent tumor suppressor activities. Its pro-apoptotic activity was mediated by a direct targeting of several anti-apoptotic genes, such as API5, BIRC5, and RAN. Interestingly, an in vivo delivery of miR-483-3p into subcutaneous SCC xenografts significantly hampered tumor growth. This effect was explained by an inhibition of cell proliferation and an increase of apoptosis. This argues for its further use as an adjuvant in the many instances of cancers characterized by a downregulation of miR-483-3p.  相似文献   

16.
Atherosclerosis (AS) is one of the significant chronic inflammatory pathology considering public health impact. Up-regulation of HDAC1 has been proved to be related with endothelial dysfunction which is correlated intimately with AS. Our research aims to investigate how histone deacetylase 1 (HDAC1)/miR-182-5p/vav guanine nucleotide exchange factor 3 (VAV3)/AKT axis participates in AS in terms of molecular mechanism. We detected miR-181-5p in human umbilical vein endothelial cells after treatment with aorta and ox-LDL in AS model mice. Dual luciferase reporter assay was employed to verify interaction of miR-182-5p and VAV3. ChIP was performed to determine the relationship between HDAC1 and promoter of miR-182-5p. Protein levels of HADC1, VAV3, AKT, p-AKT, vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), and monocyte chemotactic protein 1 (MCP-1) were detected by western blot analysis. CCK8 and flow cytometry were used to detect cell viability and apoptosis, respectively. After different treatments, the ability of cells to form monoclonal cells was detected, and AS was evaluated by detecting arterial injury and inflammation-related factors. Overexpression of HDAC1 could inhibit HUVECs proliferation and promote AS in mouse model. It was verified by dual luciferase assay that miR-182-5p could bind to VAV3 3′UTR mRNA. Meanwhile, HDAC1 repressed miR-182-5p expression through binding to miR-182-5p promoter and then inhibit VAV3 expression further. In summary, HDAC1 promoted AS through AKT pathway, which was improved by VAV3 activation mediated by miR-182-5p. Our results demonstrated that HDAC1 repressed miR-182-5p and activating AKT pathway via improving VAV3 to promote AS progression.  相似文献   

17.
Inflammation is one of the major causes of intervertebral disc degeneration (IDD). Emerging evidence has revealed that increase in the levels of pro-inflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), can activate a variety of signaling pathways, eventually resulting in IDD. Here, we show that the two cullin family genes, CUL4A and CUL4B, but not other cullins, are specifically overexpressed in IDD samples compared with healthy controls, and the CUL4A and CUL4B levels are positively correlated with the severity of IDD. In vitro analyses in human osteoblast cells (hFOB1.19), nucleus pulposus cells (hNPCs), and annulus fibrosus cells (hAFCs) indicated that treatment with IL-6 and TNF-α can increase CUL4A and CUL4B levels. By performing a microRNA-based microarray analysis, we found a set of microRNAs (miRNAs) that were differentially expressed in IDD samples compared with samples from healthy controls. Of these miRNAs, miR-194-5p, was significantly downregulated in IDD samples and could bind to the three prime untranslated regions (3′-UTRs) of both CUL4A and CUL4B, thereby downregulating their expression. The in vitro overexpression or downregulation of miR-194-5p, with a miR-194-5p-mimic or with anti-miR-194-5p, can cause the repression or induction of both CUL4A and CUL4B, respectively. Interestingly, treatment with IL-6 and TNF-α inhibitors in primary hNPCs and hAFCs that were isolated from patients with IDD led to the downregulation of CUL4A and CUL4B. Together, these findings provide insight into how the inflammation-dependent downregulation of miR-194-5p contributes to the pathogenesis of IDD, which may aid in the development of new therapeutic approaches for IDD by directly targeting miR-194-5p or CUL4A and CUL4B.  相似文献   

18.
Recurrent miscarriage (RM) occurs in approximately 1% of all couples trying to conceive. Most of the research about recurrent miscarriage mainly focuses on immunology. However, the roles of microRNAs plays (miRNAs) in RM remain elusive. Here, the function of miR-155-5p in regulating survival of human decidua stromal cells through NF-κB signaling was explored in RM. The quantitative real-time polymerase chain reaction (qRT-PCR) results showed that miR-155-5p was downregulated in both decidua tissues and serum from RM patients. While, the ELISA assay revealed that the overexpression of miR-155-5p reduced the inflammatory cytokines secretion including IL-6, IFN-γ, TNF-α and IL-10 in decidua stromal cells. The results of cell counting Kit8 (CCK-8) and immunofluorescence experiments suggested that transfection of miR-155-5p into decidua stromal cells can promote the growth and proliferation of cells. In addition, overexpression of miR-155-5p can also inhibit the apoptosis of decidua stromal cells. The western blot assay results demonstrated that the miR-155-5p exerted effect mainly through activating NF-κB signaling pathway in RM. In conclusion, the miRNA-155-5p can not only promote the growth and proliferation but also inhibit the apoptosis of decidua stromal cells depending on inhibiting NF-κB signaling pathway in recurrent miscarriage.  相似文献   

19.
Cui  Su  Yang  Chun-Lu  Chen  Dong-Yi 《Biochemical genetics》2021,59(6):1441-1456

The aim of the study is to investigate how lncRNA EWSAT1 regulates the tumorigenesis of non-small cell lung cancer (NSCLC) as a ceRNA by modulating miR-330-5p/ITGA5 axis. qRT-PCR was conducted to evaluate the expression of EWSAT1 in NSCLC tissue. Then, A549 cells were selected and divided into Blank shScramble, shEWSAT1, miR-330-5p inhibitor, shEWSAT1?+?miR-330-5p inhibitor, and siITGA5 and miR-330-5p inhibitor?+?siITGA5 groups. Besides, a series of in-vitro experiments were carried out to determine the changes in cell proliferation, apoptosis, invasion, and migration in each group. In addition, xenograft models were also constructed on nude mice to detect the tumor volume and weight, and the expression of Ki67 and apoptosis in xenograft tumor were evaluated. In NSCLC tissue and cell, EWSAT1 was upregulated significantly, demonstrating a correlation with tumor diameter, differentiation, lymph node metastasis, and TNM stage. Dual luciferase reporter gene assay confirmed targeting relationships among miR-330-5p, EWSAT1, and ITGA5. In comparison with the Blank group, the number of cell clones in the shEWSAT1 group and siITGA5 decreased, with declined invasion and migration but increased apoptotic rate. Meanwhile, ITGA5, MMP-2, and MMP-9 were downregulated with upregulated cleaved caspase-3. However, the changes above were totally reversed in the miR-330-5p inhibitor group, and miR-330-5p inhibitor transfection abolished the effect of shEWSAT1. In addition, subcutaneous xenotransplantation showed that the tumor growth in shEWSAT1 group retarded significantly, with downregulation of Ki67 and increase apoptotic rate. Silencing EWSAT1 could inhibit the expression of ITGA5 via upregulating miR-330-5p, thus, resulting in the inhibition of NSCLC cell growth.

  相似文献   

20.
Lymphocyte apoptosis is thought to have a major role in the pathophysiology of sepsis. However, there is a disconnect between animal models of sepsis and patients with the disease, because the former use subjects that were healthy prior to the onset of infection while most patients have underlying comorbidities. The purpose of this study was to determine whether lymphocyte apoptosis prevention is effective in preventing mortality in septic mice with preexisting cancer. Mice with lymphocyte Bcl-2 overexpression (Bcl-2-Ig) and wild type (WT) mice were injected with a transplantable pancreatic adenocarcinoma cell line. Three weeks later, after development of palpable tumors, all animals received an intratracheal injection of Pseudomonas aeruginosa. Despite having decreased sepsis-induced T and B lymphocyte apoptosis, Bcl-2-Ig mice had markedly increased mortality compared with WT mice following P. aeruginosa pneumonia (85 versus 44% 7-d mortality; p = 0.004). The worsened survival in Bcl-2-Ig mice was associated with increases in Th1 cytokines TNF-α and IFN-γ in bronchoalveolar lavage fluid and decreased production of the Th2 cytokine IL-10 in stimulated splenocytes. There were no differences in tumor size or pulmonary pathology between Bcl-2-Ig and WT mice. To verify that the mortality difference was not specific to Bcl-2 overexpression, similar experiments were performed in Bim(-/-) mice. Septic Bim(-/-) mice with cancer also had increased mortality compared with septic WT mice with cancer. These data demonstrate that, despite overwhelming evidence that prevention of lymphocyte apoptosis is beneficial in septic hosts without comorbidities, the same strategy worsens survival in mice with cancer that are given pneumonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号