共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiogenesis is reportedly enhanced by prostaglandins (PGs). In the present experiment, we tested whether or not COX-2 and adenylate cyclase/protein kinase A (AC/PKA)-dependent VEGF induction enhanced angiogenesis in this model. Angiogenesis was enhanced by topical injection of human recombinant basic fibroblast growth factor (bFGF). The enhanced angiogenesis by bFGF was inhibited by indomethacin or selective COX-2 inhibitors, NS398, nimesulide, and JTE-522. Topical daily injections of 8-bromo-cAMP enhanced angiogenesis in a dose-dependent manner. Forskolin, an activator of AC, also facilitated angiogenesis in a dose-dependent manner, as did amrinone, an inhibitor of phosphodiesterase. VEGF induction was confirmed by the increased levels in the fluids in the sponge matrix after topical injection of 8-bromo-cAMP. Immunohistochemical investigation further revealed the VEGF-expressed cells in the sponge granulation tissues to be fibroblasts, and the intensity of positive reactions was enhanced by bFGF, 8-bromo-cAMP, forskolin, and amrinone. Angiogenesis was inhibited by indometacin or selective COX-2 inhibitors, NS-398, nimesulide, and JTE-522. In addition, angiogenesis without topical injections of the above compounds was also suppressed by SQ22,536, an inhibitor for AC. or H-89, an inhibitor for PKA, with concomitant reductions in VEGF levels. Daily topical injections of neutralizing antibody or anti-sense oligonucleotide against VEGF significantly suppressed angiogenesis. These results suggested that COX-2 and AC/PKA-dependent induction of VEGF certainly enhanced angiogenesis, and that pharmacological tools for controlling this signaling pathway may be able to facilitate the management of conditions involving angiogenesis. 相似文献
2.
Vascular endothelial growth factor receptors in osteoclast differentiation and function 总被引:11,自引:0,他引:11
Aldridge SE Lennard TW Williams JR Birch MA 《Biochemical and biophysical research communications》2005,335(3):793-798
Osteoclasts are derived from haematopoietic stem cell precursors of the monocyte/macrophage cell lineage, through interaction with factors that are believed to include M-CSF and RANKL. VEGF is a proangiogenic cytokine that has been shown to promote osteoclast differentiation and survival. In this study, we assessed the role of VEGF and its receptors in osteoclastogenesis, in vitro, by culturing osteoclast precursors in the presence of VEGF, VEGF receptor-specific ligands, and blocking antibodies to VEGF receptors. Activation of VEGFR1 in the presence of RANKL induces osteoclast differentiation. Stimulating the receptors individually induced increased resorption by osteoclasts compared to controls but not to the level observed when stimulating both receptors simultaneously. We have shown that VEGF induces osteoclast differentiation through its action on VEGFR1. The way in which VEGF mediates its effect on mature osteoclast activity, however, may be through its interaction with both receptor subtypes. 相似文献
3.
4.
Da Silva-Azevedo L Baum O Zakrzewicz A Pries AR 《Biochemical and biophysical research communications》2002,297(5):1270-1276
In skeletal muscles, angiogenesis can be induced by increases in wall shear stress. To identify molecules involved in the angiogenic process, a method based on the use of BS-1 lectin-coated magnetic beads was developed to isolate a cellular fraction enriched in microvascular endothelial cells which are directly exposed to wall shear stress. Using such cellular fractions from skeletal muscles of C57 mice in which angiogenesis was induced by administration with the alpha(1)-adrenergic antagonist prazosin, we found the concentration of vascular endothelial growth factor (VEGF) increased in correlation to the duration of the prazosin stimulus. In contrast, the angiopoietin-2/tie-2 system was not changed even after 4days of prazosin treatment. In neuronal nitric oxide synthase (nNOS) knockout mice, the VEGF concentration was also elevated after prazosin treatment but remained almost unchanged in endothelial nitric oxide synthase (eNOS) knockout mice. However, eNOS (and not nNOS) knockout mice expressed higher levels of VEGF under non-stimulated conditions as compared to C57 mice. These results suggest that VEGF produced in endothelial cells is involved in angiogenesis in skeletal muscles of mice responding to the administration of systemic vasodilators. NO derived from eNOS and nNOS may be an important regulator of the angiogenic response in skeletal muscles in vivo. 相似文献
5.
6.
Activation of the protein kinase Akt/PKB mediates VEGF-dependent endothelial cell survival and eNOS activation. Here we examined the role of PKC in mediating VEGF-induced Akt activation. The PKC inhibitors GF109203X and calphostin C inhibited VEGF-induced Akt activation. Rottlerin and Go6976, inhibitors with specificities for PKC delta and alpha, respectively, also strongly inhibited VEGF-induced Akt activation. VEGF-induced Akt activation was prevented by down-regulation of PKC induced by prolonged pretreatment with the phorbol ester, PMA. VEGF induced phosphorylation of PKC delta at Thr 505 in the activation loop, and this phosphorylation was inhibited by LY294002, suggesting that modulation of PKC delta activation by VEGF occurs distal to phosphatidylinositol 3'-kinase. PKC and PI3K inhibitors both strongly reduced the stimulation of branching tubulogenesis by VEGF in vitro. The finding that PKC mediates VEGF-induced Akt activation identifies a novel signal transduction pathway through which Akt can be regulated by growth factors acting through receptor protein tyrosine kinases, and indicates that PKC-mediated Akt activity may play an essential role in VEGF-stimulated angiogenesis. 相似文献
7.
Kosuke Yamaguchi Haruka Sudo Kazushi Imai 《Biochemical and biophysical research communications》2019,508(2):405-409
An increase in the vasculature is one of most representative changes in the synovial tissue of joints in rheumatoid arthritis (RA) and is closely associated with disease progression. Although the vasculatures are believed to be a result of VE-cadherin-dependent angiogenesis and a possible therapeutic target of the disease, synovial fibroblastic cells express VE-cadherin and form tube-like structures, suggesting that vasculatures in RA synovium may not simply result from angiogenesis. This paper analyzes a mechanism of VE-cadherin expression by rheumatoid arthritic synovial fibroblast-like cells (RSFLs) and their involvement in the tube-like formation. A representative angiogenic factor, vascular endothelial growth factor (VEGF), and its binding to a predominant receptor (VEGFR2) activated VE-cadherin expression and the signaling pathways of ERK/MAPK and PI3K/AKT/mTOR. Treatment of RSFLs with signaling pathway inhibitors, VEGFR2 siRNA and a VEGF-antagonizing mimicking peptide inhibited VE-cadherin expression dose-dependently. VEGF-stimulated tube-like formation by RSFLs on Matrigel was hindered by the mimicking peptide and inhibitor treatment. This data demonstrates that RSFLs activated by VEGF binding of VEGFR2 express VE-cadherin and formed tube-like structure under the control of ERK/MAPK and PI3K/AKT/mTOR pathways suggesting that the inhibition suppresses vascular development in RA synovium. 相似文献
8.
9.
Michael S. Pepper Stefano J. Mandriota Michael Jeltsch Vijay Kumar Kari Alitalo 《Journal of cellular physiology》1998,177(3):439-452
Vascular endothelial growth factor-C (VEGF-C) is a recently characterized member of the VEGF family of angiogenic polypeptides. We demonstrate here that VEGF-C is angiogenic in vitro when added to bovine aortic or lymphatic endothelial (BAE and BLE) cells but has little or no effect on bovine microvascular endothelial (BME) cells. As reported previously for VEGF, VEGF-C and basic fibroblast growth factor (bFGF) induced a synergistic in vitro angiogenic response in all three cells lines. Unexpectedly, VEGF and VEGF-C also synergized in the in vitro angiogenic response when assessed on BAE cells. Characterization of VEGF receptor (VEGFR) expression revealed that BME, BAE, and BLE cell lines express VEGFR-1 and -2, whereas of the three cell lines assessed, only BAE cells express VEGFR-3. We also demonstrate that VEGF-C increases plasminogen activator (PA) activity in the three bovine endothelial cell lines and that this is accompanied by a concomitant increase in PA inhibitor-1. Addition of α2-antiplasmin to BME cells co-treated with bFGF and VEGF-C partially inhibited collagen gel invasion. These results demonstrate, first, that by acting in concert with bFGF or VEGF, VEGF-C has a potent synergistic effect on the induction of angiogenesis in vitro and, second, that like VEGF and bFGF, VEGF-C is capable of altering endothelial cell extracellular proteolytic activity. These observations also highlight the notion of context, i.e., that the activity of an angiogenesis-regulating cytokine depends on the presence and concentration of other cytokines in the pericellular environment of the responding endothelial cell. J. Cell. Physiol. 177:439–452, 1998. © 1998 Wiley-Liss, Inc. 相似文献
10.
Angiogenesis is an important event for gastric ulcer healing. Vascular endothelial growth factor (VEGF) is known to be a potent stimulator of angiogenesis. This study consequently examined VEGF production, VEGF mRNA expression and angiogenesis during the spontaneous and indomethacin-delayed healing of acetic acid-induced ulcers in rats. The production of VEGF, taking place in the normal mucosa, was significantly elevated by ulceration. The mRNA expression of three isoforms of VEGF (VEGF188, VEGF164 and VEGF120) was also detected. Following the increase in VEGF production, angiogenesis was significantly promoted in the ulcer base. VEGF-immunoreactivity was observed in granulocytes, fibroblasts and regenerated epithelial cells. Indomethacin markedly inhibited prostaglandin E2 synthesis in the ulcer base, resulting in the prevention of ulcer healing. Angiogenesis was also significantly inhibited by indomethacin, but neither VEGF production nor VEGF mRNA expression was reduced. Such results suggest that VEGF might play a role in angiogenesis in the spontaneous healing of gastric ulcers in rats. However, the inhibition of angiogenesis in indomethacin-delayed ulcer healing is not explainable on VEGF expression. 相似文献
11.
12.
13.
14.
Alaiti MA Ishikawa M Masuda H Simon DI Jain MK Asahara T Costa MA 《Journal of cellular and molecular medicine》2012,16(10):2413-2421
Ex vivo culture has been proposed as a means to augment and repair autologous cells in patients with chronic diseases, but the mechanisms governing improvement in cell function are not well understood. Although microRNAs (miRs) are increasingly appreciated as key regulators of cellular function, a role for these factors in CD34+ cell-mediated angiogenesis has not been elucidated. Vascular endothelial growth factor (VEGF) was previously shown to induce expression of certain miRs associated with angiogenesis in endothelial cells and promote survival and number of vascular colony forming units of haematopoietic stem cells (HSCs). We sought to evaluate the role of VEGF in expansion and angiogenic function of CD34+ cells and to identify specific miRs associated with angiogenic properties of expanded cells. Umbilical cord blood CD34+ cells were effectively expanded (18- to 22-fold) in culture medium containing stem cell factor (SCF), Flt-3 ligand (Flt-3), thrombopoietin (TPO) and interleukin-6 (IL-6) with (postEX/+VEGF) and without VEGF (postEX/noVEGF). Tube formation in matrigel assay and tissue perfusion/capillary density in mice ischaemic hindlimb were significantly improved by postEX/+VEGF cells compared with fresh CD34+ and postEX/noVEGF cells. MiR-210 expression was significantly up-regulated in postEX/+VEGF cells. MiR-210 inhibitor abrogated and 210 mimic recapitulated the pro-angiogenic effects by treatment of postEX/+VEGF and postEX/noVEGF cells respectively. Collectively, these observations highlight a critical role for VEGF in enhancing the angiogenic property of expanded cells, and identify miR-210 as a potential therapeutic target to enhance CD34+ stem cell function for the treatment of ischaemic vascular disease. 相似文献
15.
《Free radical research》2013,47(10):1124-1135
AbstractReactive oxygen species (ROS) are important mediators for VEGF receptor 2 (VEGFR2) signalling involved in angiogenesis. The initial product of Cys oxidation, cysteine sulfenic acid (Cys-OH), is a key intermediate in redox signal transduction; however, its role in VEGF signalling is unknown. We have previously demonstrated IQGAP1 as a VEGFR2 binding scaffold protein involved in ROS-dependent EC migration and post-ischemic angiogenesis. Using a biotin-labelled Cys-OH trapping reagent, we show that VEGF increases protein-Cys-OH formation at the lamellipodial leading edge where it co-localizes with NADPH oxidase and IQGAP1 in migrating ECs, which is prevented by IQGAP1 siRNA or trapping of Cys-OH with dimedone. VEGF increases IQGAP1-Cys-OH formation, which is prevented by N-acetyl cysteine or dimedone, which inhibits VEGF-induced EC migration and capillary network formation. In vivo, hindlimb ischemia in mice increases Cys-OH formation in small vessels and IQGAP1 in ischemic tissues. In summary, VEGF stimulates localized formation of Cys-OH-IQGAP1 at the leading edge, thereby promoting directional EC migration, which may contribute to post-natal angiogenesis in vivo. Thus, targeting Cys-oxidized proteins at specific compartments may be the potential therapeutic strategy for various angiogenesis-dependent diseases. 相似文献
16.
Tumor growth, angiogenesis and inflammation in mice lacking receptors for platelet activating factor (PAF) 总被引:1,自引:0,他引:1
Tumor growth is associated with angiogenesis and inflammation and the endogenous lipid, platelet activating factor (PAF), is a pro-inflammatory and pro-angiogenic mediator. We therefore measured tumor growth, angiogenesis and inflammation in normal (WT) mice and those lacking the receptor for PAF, through gene deletion (PAFR-KO). Growth of solid tumors derived from colon 26 cells was not altered but that from Ehrlich cells was markedly (5-fold) increased in the PAFR-KO mice, relative to the WT strain. Angiogenesis, as tumor content of VEGF or hemoglobin, was increased in both tumors from the mutant strain. Inflammation, as neutrophil and macrophage accumulation and chemokine (CXCL2 and CCL2) content of tumors, was decreased or unchanged in the tumors implying an overall decrease in the inflammatory response in the PAFR-KO strain. We also assessed growth of the Ehrlich tumor in its ascites form, after i.p. injection. Here growth (ascites volume) was inhibited by about 30%, but neutrophil and macrophage numbers were increased in the ascites fluid from the PAFR-KO mice. Angiogenesis in the peritoneal wall, which is not invaded by the tumor cells, was increased but leukocyte infiltration decreased in the mutant strain. Our results show, unexpectedly, that tumor-induced angiogenesis was increased in mice lacking response to PAF, from which we infer that in normal (WT) mice, PAF is anti-angiogenic. Further, although growth was still associated with angiogenesis in PAFR-KO mice, growth was not correlated with inflammation (leukocyte accumulation). 相似文献
17.
Vascular endothelial growth factor (VEGF) receptor-2 signaling mediates VEGF-C(deltaNdeltaC)- and VEGF-A-induced angiogenesis in vitro 总被引:5,自引:0,他引:5
Tille JC Wang X Lipson KE McMahon G Ferrara N Zhu Z Hicklin DJ Sleeman JP Eriksson U Alitalo K Pepper MS 《Experimental cell research》2003,285(2):286-298
Angiogenesis and lymphangiogenesis are regulated by members of the vascular endothelial growth factor (VEGF) family of cytokines, which mediate their effects via tyrosine kinase VEGF receptors -1, -2, and -3. We have used wild-type and mutant forms of VEGFs -A, -B, and -C, a pan-VEGFR tyrosine kinase inhibitor (SU5416) as well as neutralizing anti-VEGFR-2 antibodies, to determine which VEGF receptor(s) are required for bovine endothelial cell invasion and tube formation in vitro. This was compared to the ability of these cytokines to induce expression of members of the plasminogen activator (PA)-plasmin system. We found that cytokines which bind VEGFR-2 (human VEGF-A, human VFM23A, human VEGF-C(deltaNdeltaC), and rat VEGF-C(152)) induced invasion, tube formation, urokinase-type-PA, tissue-type-PA, and PA inhibitor-1, invasion and tube formation as well as signaling via the MAP kinase pathway were efficiently blocked by SU5416 and anti-VEGFR-2 antibodies. In contrast, cytokines and mutants which exclusively bind VEGFR-1 (human VFM17 and human VEGF-B) had no effect on invasion and tube formation or on the regulation of gene expression. We were unable to identify cytokines which selectively stimulate bovine VEGFR-3 in our system. Taken together, these findings point to the central role of VEGFR-2 in the angiogenic signaling pathways induced by VEGF-C(deltaNdeltaC) and VEGF-A. 相似文献
18.
Angiogenesis is heavily influenced by VEGF-A and its family of receptors, particularly VEGF receptor 2 (VEGF-R2). Like most cell surface proteins, VEGF-R2 is glycosylated, although the function of VEGF-R2 with respect to its glycosylation pattern is poorly characterized. Galectin-3, a glycan binding protein, interacts with the EGF and TGFβ receptors, retaining them on the plasma membrane and altering their signal transduction. Because VEGF-R2 is glycosylated and both galectin-3 and VEGF-R2 are involved with angiogenesis, we hypothesized that galectin-3 binds VEGF-R2 and modulates its signal transduction as well. Employing a Western blot analysis approach, we found that galectin-3 induces phosphorylation of VEGF-R2 in endothelial cells. Knockdown of galectin-3 and Mgat5, an enzyme that synthesizes high-affinity glycan ligands of galectin-3, reduced VEGF-A mediated angiogenesis in vitro. A direct interaction on the plasma membrane was detected between galectin-3 and VEGF-R2, and this interaction was dependent on the expression of Mgat5. Using immunofluorescence and cell surface labeling, we found an increase in the level of internalized VEGF-R2 in both Mgat5 and galectin-3 knockdown cells, suggesting that galectin-3 retains the receptor on the plasma membrane. Finally, we observed reduced suture-induced neovascularization in the corneas of Gal3(-/-) and Mgat5(-/-) mice. These findings are consistent with the hypothesis that, like its role with the EGF and TGFβ receptors, galectin-3 contributes to the plasma membrane retention and proangiogenic function of VEGF-R2. 相似文献
19.
20.
Infanger M Kossmehl P Shakibaei M Baatout S Witzing A Grosse J Bauer J Cogoli A Faramarzi S Derradji H Neefs M Paul M Grimm D 《Apoptosis : an international journal on programmed cell death》2006,11(5):749-764
Endothelial cells play a crucial role in the pathogenesis of many diseases and are highly sensitive to low gravity conditions.
Using a three-dimensional random positioning machine (clinostat) we investigated effects of simulated weightlessness on the
human EA.hy926 cell line (4, 12, 24, 48 and 72 h) and addressed the impact of exposure to VEGF (10 ng/ml). Simulated microgravity
resulted in an increase in extracellular matrix proteins (ECMP) and altered cytoskeletal components such as microtubules (alpha-tubulin)
and intermediate filaments (cytokeratin). Within the initial 4 h, both simulated microgravity and VEGF, alone, enhanced the
expression of ECMP (collagen type I, fibronectin, osteopontin, laminin) and flk-1 protein. Synergistic effects between microgravity
and VEGF were not seen. After 12 h, microgravity further enhanced all proteins mentioned above. Moreover, clinorotated endothelial
cells showed morphological and biochemical signs of apoptosis after 4 h, which were further increased after 72 h. VEGF significantly
attenuated apoptosis as demonstrated by DAPI staining, TUNEL flow cytometry and electron microscopy. Caspase-3, Bax, Fas,
and 85-kDa apoptosis-related cleavage fragments were clearly reduced by VEGF. After 72 h, most surviving endothelial cells
had assembled to three-dimensional tubular structures. Simulated weightlessness induced apoptosis and increased the amount
of ECMP. VEGF develops a cell-protective influence on endothelial cells exposed to simulated microgravity. 相似文献