首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenotypic plasticity in defensive traits is a common response of prey organisms to variable and unpredictable predation regimes and risks. Cladocerans of the genus Daphnia are keystone species in the food web of lentic freshwater bodies and are well known for their ability to express a large variety of inducible morphological defenses in response to invertebrate and vertebrate predator kairomones. The developed defenses render the daphnids less susceptible to predation. So far, primarily large‐scale morphological defenses, like helmets, crests, and tail‐spines, have been documented. However, less is known on whether the tiny spinules, rather inconspicuous traits which cover many Daphnia’s dorsal and ventral carapace margins, respond to predator kairomones, as well. For this reason, we investigated two Daphnia species (Dmagna and D. longicephala) concerning their predator kairomone‐induced changes in dorsal and ventral spinules. Since these small, inconspicuous traits may only act as a defense against predatory invertebrates, with fine‐structured catching apparatuses, and not against vertebrate predators, we exposed them to both, an invertebrate (Triops cancriformis or Notontecta maculata) and a vertebrate predator (Leucaspius delineatus). Our results show that the length of these spinules as well as spinules‐covered areas vary, likely depending on the predator the prey is exposed to. We further present first indications of a Daphnia species‐specific elongation of the spinules and an increase of the spinules‐bearing areas. Although we cannot exclude that spinescence is altered because it is developmentally connected to changes in body shape in general, our results suggest that the inducible alterations to the spinule length and spinules‐covered areas disclose another level of predator‐induced changes in two common Daphnia species. The predator‐induced changes on this level together with the large‐scale and ultrastructural defensive traits may act as the overall morphological defense, adjusted to specific predator regimes in nature.  相似文献   

2.
Over a two-year period, each of the three Daphnia species in two lakes with different pressure by fish and invertebrate predators exhibited different defensive reactions: predator avoidance in space (Daphnia hyalina), seasonal morphological changes (Daphnia cucullata), and a combination of both (Daphnia cristata). Body size and general susceptibility to predation, combined with predators' preferences were most likely responsible for the kind of defence in each of the three Daphnia.  相似文献   

3.
1. The exotic cladoceran Daphnia lumholtzi has recently invaded freshwater systems throughout the United States. Daphnia lumholtzi possesses extravagant head spines that are longer than those found on any other North American Daphnia. These spines are effective at reducing predation from many of the predators that are native to newly invaded habitats; however, they are plastic both in nature and in laboratory cultures. The purpose of this experiment was to better understand what environmental cues induce and maintain these effective predator‐deterrent spines. We conducted life‐table experiments on individual D. lumholtzi grown in water conditioned with an invertebrate insect predator, Chaoborus punctipennis, and water conditioned with a vertebrate fish predator, Lepomis macrochirus. 2. Daphnia lumholtzi exhibited morphological plasticity in response to kairomones released by both predators. However, direct exposure to predator kairomones during postembryonic development did not induce long spines in D. lumholtzi. In contrast, neonates produced from individuals exposed to Lepomis kairomones had significantly longer head and tail spines than neonates produced from control and Chaoborus individuals. These results suggest that there may be a maternal, or pre‐embryonic, effect of kairomone exposure on spine development in D. lumholtzi. 3. Independent of these morphological shifts, D. lumholtzi also exhibited plasticity in life history characteristics in response to predator kairomones. For example, D. lumholtzi exhibited delayed reproduction in response to Chaoborus kairomones, and significantly more individuals produced resting eggs, or ephippia, in the presence of Lepomis kairomones.  相似文献   

4.
Keystone predators, by reducing the abundance of competitively superior prey, may have indirect positive effects on weak competitors, possibly increasing their abundance or preventing local competitive exclusion. By analogy to the Intermediate Disturbance Hypothesis, we would expect species diversity to peak at intermediate predator densities. In a replicated artificial pool experiment, we examined the relationships between density of the backswimmer Notonecta maculata (0, 1, 2, and 4 per 30 l pool) and invertebrate taxon diversity over an 11-week period of predator occupancy. Diversity reached high levels at high predator density sooner than at intermediate density. At the end of the experiment, taxon diversity was greatest at densities of 2 and 4 Notonecta per pool. While the overall predator density–diversity curve was in line with the intermediate disturbance hypothesis, the reduction in diversity from intermediate to high predator density was not statistically significant. Density of the preferred prey Daphnia magna decreased with Notonecta density, while densities of the smaller cladocerans Moina brachiata and Ceriodaphnia spp. increased. Suppression of Daphnia at high Notonecta densities may partially explain the increase in Moina and Ceriodaphnia densities. However, most of the relationship between Notonecta and the smaller cladocerans appears to be independent of Daphnia, suggesting complex interactions within the community. Our results suggest that keystone predation plays a strong role in structuring this community. Although diversity did not decrease significantly at the highest predator density as predicted, such a decrease may be more likely for pools with longer durations of predator occupancy or with higher predator densities.  相似文献   

5.
Hoverman JT  Relyea RA 《Oecologia》2007,154(3):551-560
Studies of inducible defenses have traditionally examined prey responses to one predator at a time. However, prey in nature encounter combinations of predators that should force them to produce phenotypic compromises. We examined how snails (Helisoma trivolvis) alter their phenotype in the presence of three different predator species that were presented alone and in pairwise combinations. When snails were exposed to each predator alone, they formed predator-specific defenses that reflected the differences in each predator’s foraging mode. When snails were exposed to pairwise combinations of predators, their phenotype was dependent on their ability to detect each predator, the risk posed by each predator, and the effectiveness of a given defense against each predator. Consequently, responses to combined predators were typically biased towards one of the predators in the pair. This suggests that prey facing combined predators do not form simple intermediate defenses and, as a result, may experience enhanced mortality risk when they encounter natural predator regimes.  相似文献   

6.
In many species of Daphnia spines, neck teeth, and enlarged or reshaped helmets are well-known as defences against invertebrate predators. Until now, Daphnia hyalina (Leydig, 1860), a common species in many European lakes, has appeared to be an exception to this rule.Here, we provide evidence that the larvae of Chaoborus flavicans (Meigen) also can induce morphological changes in D. hyalina. Specimens react morphologically to the presence of larvae in three ways: (a) by changes in the shape of head shield, (b) by the formation of spine(s) on the head, and (c) by the elongation of the tail spine. The frequency and intensity of these morphological changes are correlated positively with midge larvae densities. The most pronounced reactions occurred in young D. hyalina.The predator kairomone also induced changes in Daphnia body size.  相似文献   

7.
M. Alonso 《Hydrobiologia》1985,128(3):217-228
A very particular form of Daphnia (Ctenodaphnia), adapted to life in epicontinental hyperhaline waters of Mediterranean arid regions had long been confused with Daphnia (Ctenodaphnia) dolichocephala Sars, 1895. In this paper the morphological and ecological differences between the two taxa are pointed out and comparison is made with another closely related Rumanian form (Daphnia cf. mediterranea) and with the related Spanish species (D. atkinsoni and D. chevreuxi). The Daphnia of saline environments is described here as Daphnia (Ctenodaphnia) mediterranea. The most important differential characters of this new species are: 1) the short and widely rounded rostrum; 2) dorsal ridge of the female extends to the anteriormost part of the head; 3) elliptical ephippium with a ride anterior margin; convex shape and separate from the dorsal ridge; 4) males possessing a very long antennule base that reaches the distal limit of the head.  相似文献   

8.
Caroline Ross 《Oecologia》1992,92(3):383-390
Morphological and life history traits of two clones of the cladoceran Daphnia pulex were measured in the presence and absence of size-selective insect predators, the midge larva Chaoborus flavicans, which preys on small Daphnia, and the water bug Notonecta glauca, which preys on large Daphnia. The aim was to detect predator-induced phenotypic changes, particularly the effect of simultaneous exposure to both types of predators. Other work has shown that in the presence of Chaoborus americanus, Daphnia pulex produce a socalled neck spine which may carry several teeth. The morphological modifications are supposed to serve as an anti-predator device. Furthermore, females exposed to Chaoborus often delay their maturation; this has been interpreted as a cost that balances the benefits of the neck teeth. In this investigation, females of both clones produced fewer but larger offspring than control animals when reared in the presence of Chaoborus flavicans. The offspring showed the typical neck spine and delayed first reproduction. In the presence of Notonecta glauca, one of the clones produced more and smaller offspring, and maturation occurred at earlier instars. The other clone also produced more offspring than the control but there was no size difference. When both predators were present, in most cases the reactions of the daphnids were similar to those in the Notonecta experiment. The response to Chaoborus appeared to be suppressed. The observed modifications are interpreted as evolved strategies that reduce the impact of size-selective predation. They are consistent with predictions of life-history theory.  相似文献   

9.
M. J. Barry 《Oecologia》2000,124(3):396-401
The predator-induced responses of two species of Australian Daphnia, with contrasting distributions and life history patterns, to the kairomones of two species of Anisops predators, were measured. Daphnia longicephala produced a large crest and attained a larger size when exposed to both predators. D. carinata sl matured earlier than D. longicephala and did not produce a crest. Surprisingly, kairomones of both predators inhibited the production of ephippia in D. carinata sl. Anisops stali, the larger of the two predator species, induced a significantly larger crest size in D. longicephala, and larger brood size in both species compared with the smaller A. gratus, indicating a quantitative but not qualitative effect of predator species on inducible defences. Received: 18 August 1999 / Accepted: 14 April 2000  相似文献   

10.
Size-selective predation by fish is often considered to be a primary driver of seasonal declines in large-bodied Daphnia populations. However, large Daphnia commonly exhibit midsummer extinctions in ponds lacking planktivorous fish. A number of empirical and theoretical studies suggest that resource competition and its interaction with nutrient enrichment may determine variable dominance by large Daphnia. Low resource levels may favor competitive dominance by small-bodied taxa while large Daphnia may be favored under high resource conditions or following a nutrient/productivity pulse. Nutrient enrichment may also influence the strength of invertebrate predation on Daphnia by affecting how long vulnerable juveniles are exposed to predation. We investigated these hypotheses using an in situ mesocosm experiment in a permanent fishless pond that exhibited seasonal losses of Daphnia pulex. To explore the effects of nutrient enrichment, Daphnia plus a diverse assemblage of small-bodied zooplankton were exposed to three levels of enrichment (low, medium, and high). To explore the interaction between nutrient enrichment and invertebrate predation, we crossed the presence/absence of Notonecta undulata with low and high nutrient manipulations. We found no evidence of competitive reversals or shifts in dominance among nutrient levels, Daphnia performed poorly regardless of enrichment. This may have been due to shifts in algal composition to dominance by large filamentous green algae. Notonecta had significant negative effects on Daphnia alone, but no interaction with nutrient enrichment was detected. These results suggest that Daphnia are not invariably superior resource competitors compared to small taxa. Though predators can have negative effects, their presence is not necessary to explain poor Daphnia performance. Rather, abiotic conditions and/or resource-based effects are probably of greater importance.  相似文献   

11.
Predation is one of the most important drivers of natural selection. In consequence a huge variety of anti-predator defenses have evolved in prey species. Under unpredictable and temporally variable predation pressure, the evolution of phenotypically plastic defensive traits is favored. These “inducible defenses”, range from changes in behavior, life history, physiology to morphology and can be found in almost all taxa from bacteria to vertebrates. An important group of model organisms in ecological, evolutionary and environmental research, water fleas of the genus Daphnia (Crustacea: Cladocera), are well known for their ability to respond to predators with an enormous variety of inducible morphological defenses. Here we report on the “twist”, a body torsion, as a so far unrecognized inducible morphological defense in Daphnia, expressed by Daphnia barbata exposed to the predatory tadpole shrimp Triops cancriformis. This defense is realized by a twisted carapace with the helmet and the tail spine deviating from the body axis into opposing directions, resulting in a complete abolishment of bilateral symmetry. The twisted morphotype should considerably interfere with the feeding apparatus of the predator, contributing to the effectiveness of the array of defensive traits in D. barbata. As such this study does not only describe a completely novel inducible defense in the genus Daphnia but also presents the first report of a free living Bilateria to flexibly respond to predation risk by abandoning bilateral symmetry.  相似文献   

12.
ABSTRACT. Survival of a potential prey organism depends on the effectiveness of its physical, chemical, behavioral and life history responses to the appearance of a predator. Inducible defenses are flexible responses in which predator (or competitor)-released substances stimulate potential prey organisms to transform into predator-resistant phenotypes. Induced defenses may be highly protective. Benefits however are often balanced by fitness costs such as decreased growth rates or reduced reproductive potential. Here I discuss inducible defenses in ciliates with particular attention to the hypotrich genera: Aspidisca, Euplotes, Onychodromus, Sterkiella, and an undescribed hypotrich genus. I isolated Sterkiella sp. and the undescribed genus from vernal woodland pools on Saint Anselm College campus. Experimental evidence shows that a signal-induced defensive transformation occurs in these ciliates within hours after exposure to a predator cue and results in a significant decrease in susceptibility to predation. Deployment of ciliate antipredator structures such as spines, keels, ridges and other protuberances requires a large investment of cytoskeletal elements, primarily microtubules, and incurs an evolutionary cost in the form of significantly reduced growth rates. Onychodromus quadricornutus exhibits an extraordinary degree of phenotypic plasticity. In response to different environmental conditions individuals within a clone may express one of three general phenotypes: basic, lanceolate, or giant cells. The predacious giant phenotype releases a morphogenetically active signal substance, Onychodromus-factor, that triggers defensive phenotypic transformation in both intraspecific and interspecific prey. Enzyme degradation and ultrafiltration experiments indicate that Onychodromus-factor is a peptide with a molecular weight below 10,000 Da. Conspecifics develop hypertrophied dorsal spines when exposed to Onychodromus-factor. Sterkiella cells develop two defensive dorsal keels and transform to an enlarged ovoid cell in response to Onychodromus-factor as well as inducing signals released by Stylonychia, Urosyla, and Lembadion. Field studies of two vernal pools show that defensive phenotypic transformation in Sterkiella cells coincides with the appearance of Lembadion magnum during vernal pool succession. An undescribed hypotrich genus also expresses its defended phenotype when Lembadion is present in these pools. Aspidisca turrita (Ehrenberg, 1838) Claparede and Lachmann 1858, closely resembles Aspidisca lynceus (Müller, 1773) except for the possession of a dorsal thorn-like structure. Experimental evidence shows that the dorsal thron is a defensive structure induced by signals released by the predacious ciliates Urostyla grandis and Lembadion magnum. Thus, A. turrita and A. lynceus are alternate phenotypes of the same species. I speculate that inducing signals function in predacious ciliates as lectin-like, carbohydrate-binding adhesion proteins during prey recognition and that prey species have evolved specialized cell surface receptors that allow detection of different predator proteins. I consider consequences for both predator and prey.  相似文献   

13.
The behavioural response of Daphnia cucullata to the presence of the pelagic invertebrate predator Leptodora kindtii, and the predation rate of littoral dragonfly nymphs on this species were investigated under laboratory conditions. Results of this study revealed a strong hiding response of Daphnia cucullata in the presence of the predatory cladoceran, L. kindtii, which was similar to the response of Daphnia in the presence of juvenile perch. This suggests that pelagic invertebrate predators may cause Daphnia to hide in the littoral zone which could result in increased exposure to predation by littoral invertebrates. A strong influence of dragonfly nymphs on D. cucullata, both in the presence and absence of macrophytes, was found. The average predation rate of Odonata larvae was about 5 prey ind–1 h–1 and did not differ significantly between treatments. Quantification of dragonfly pressure on Daphnia populations will require cross‐verification with field experiments since in the natural conditions Daphnia seeks a shelter in the vegetation stands against predation by Leptodora, despite the occurrence of odonates. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Studies on spatial avoidance behaviour of predators by prey often ignored the fact that prey typically face multiple predators which themselves interact and show a spatial pattern in abundance and predation rates (PRs). In a series of laboratory experiments, we investigated predation risk (PRI) and horizontal migration of the cladoceran Daphnia magna between open water and vegetation in response to two important invertebrate predators with a contrasting spatial distribution: pelagic Choaborus and vegetation-associated Ischnura. As expected, PRI by Chaoborus was higher in open water due to higher numbers and higher PRs of Chaoborus, while for Ischnura, PRI was highest in the vegetation due to higher densities, despite lower PRs of Ischnura. In accordance with this, Daphnia moved into the vegetation in the presence of the pelagic Chaoborus alone. In the presence of Ischnura alone, however, Daphnia showed no response. We hypothesize this may be the result of a constitutive behaviour of Daphnia to avoid pelagic fish, which impedes a response to the open water. In the combined predator treatment, Daphnia migrated to the open water zone. The increased risk of predation in the vegetation, due to a facilitating effect of Chaoborus on Ischnura PRs is believed to have caused this migration of the Daphnia. This response of Daphnia declined through time and Daphnia moved toward the vegetation. A decline in the activity of the Ischnura larvae through time may have switched the risk balance in favour of the vegetation environment.  相似文献   

15.
We demonstrate the effect of fish predation on genotype frequencies in a laboratory population composed of two Daphnia magna clones, with historically contrasting exposures to fish predation. The two clones differed in their responsiveness to predation via differential avoidance/escape behavior. The clone which coexists with fish in nature is more responsive to the presence of a fish predator, while the clone not exposed to fish predation does not exhibit the defensive reaction. Fish caused a rapid (within 18 h) and significant shift in Daphnia clonal composition, from 1:1 to 8:1, in favor of the responsive clone. Genotype-specific defensive abilities (modus defendi) can contribute greatly to the phenomenon of genotype replacement under selective predation.  相似文献   

16.

Background

Inducible defenses are a common and widespread form of phenotypic plasticity. A fundamental factor driving their evolution is an unpredictable and heterogeneous predation pressure. This heterogeneity is often used synonymously to quantitative changes in predation risk, depending on the abundance and impact of predators. However, differences in ‘modality’, that is, the qualitative aspect of natural selection caused by predators, can also cause heterogeneity. For instance, predators of the small planktonic crustacean Daphnia have been divided into two functional groups of predators: vertebrates and invertebrates. Predators of both groups are known to cause different defenses, yet predators of the same group are considered to cause similar responses. In our study we question that thought and address the issue of how multiple predators affect the expression and evolution of inducible defenses.

Results

We exposed D. barbata to chemical cues released by Triops cancriformis and Notonecta glauca, respectively. We found for the first time that two invertebrate predators induce different shapes of the same morphological defensive traits in Daphnia, rather than showing gradual or opposing reaction norms. Additionally, we investigated the adaptive value of those defenses in direct predation trials, pairing each morphotype (non-induced, Triops-induced, Notonecta-induced) against the other two and exposed them to one of the two predators. Interestingly, against Triops, both induced morphotypes offered equal protection. To explain this paradox we introduce a ‘concept of modality’ in multipredator regimes. Our concept categorizes two-predator-prey systems into three major groups (functionally equivalent, functionally inverse and functionally diverse). Furthermore, the concept includes optimal responses and costs of maladaptions of prey phenotypes in environments where both predators co-occur or where they alternate.

Conclusion

With D. barbata, we introduce a new multipredator-prey system with a wide array of morphological inducible defenses. Based on a ‘concept of modality’, we give possible explanations how evolution can favor specialized defenses over a general defense. Additionally, our concept not only helps to classify different multipredator-systems, but also stresses the significance of costs of phenotype-environment mismatching in addition to classic ‘costs of plasticity’. With that, we suggest that ‘modality’ matters as an important factor in understanding and explaining the evolution of inducible defenses.
  相似文献   

17.
Migrations of Daphnia longispina were studied in a small humic lake with an exceptionally shallow oxic epilimnion. Horizontal distributions showed clear avoidance of the shoreline, which might be explained by the lower density of predators (Chaoborus sp. and Notonecta sp.) in the central parts of the lake. In early summer all size classes of D. longispina exhibited upward nocturnal vertical migration, descending to the upper hypolimnion in daytime. Later in summer, when the nocturnally migrating Chaoborus sp. had grown large enough to graze on small Daphnia, the latter seemed to shift towards twilight migration. However, large Daphnia individuals showed no synchronized migration; rather their bimodal vertical distributions suggested asynchronous vertical migration. Large individuals showed a particular tendency to concentrate near to the oxycline, close to the dense phytoplankton and bacteria populations in the upper part of the anoxic hypolimnion. According to vertical trap experiments, large D. longispina visited the anoxic hypolimnion and might harvest its abundant food resources. The high haemoglobin content of large individuals seems a specific adaptation to allow access to low oxygen water and hence to maximize grazing potential, in both epi- and hypolimnion, and minimize predation pressure. By staying predominantly in cooler water near the oxycline, Daphnia might also minimize its energy consumption to adjust to low food availability while sustaining a sufficiently high population density to exploit those unpredictable short periods with abundant food which are common in small headwater lakes. It is suggested that migrations of zooplankton are a complex behavioural adaptation which may not be explained by any single factor. In humic lakes with shallow stratification, vertical migrations seem to offer particularly high potential advantages, because of the short distances between dramatically different environments in the water column. In further studies more emphasis should be placed on migrations of individuals rather than populations, and migrations should be considered as a dynamic part of the structure and function of the whole planktonic ecosystem.  相似文献   

18.
Ecological communities are partly structured by indirect interactions, where one species can indirectly affect another by altering its interactions with a third species. In the absence of direct predation, nonconsumptive effects of predators on prey have important implications for subsequent community interactions. To better understand these interactions, we used a Daphnia‐parasite‐predator cue system to evaluate if predation risk affects Daphnia responses to a parasite. We investigated the effects of predator cues on two aspects of host–parasite interactions (susceptibility to infection and infection intensity), and whether or not these effects differed between sexes. Our results show that changes in response to predator cues caused an increase in the prevalence and intensity of parasite infections in female predator‐exposed Daphnia. Importantly, the magnitude of infection risk depended on how long Daphnia were exposed to the cues. Additionally, heavily infected Daphnia that were constantly exposed to cues produced relatively more offspring. While males were ~5× less likely to become infected compared to females, we were unable to detect effects of predator cues on male Daphnia–parasite interactions. In sum, predators, prey, and their parasites can form complex subnetworks in food webs, necessitating a nuanced understanding of how nonconsumptive effects may mediate these interactions.  相似文献   

19.
Parasites and predators are ubiquitous threats in every ecosystem. Host and prey species, respectively, have evolved effective protective mechanisms which are assumed to involve costs. In this study, we analyzed potential interactions between both threats. We exposed waterfleas (Daphnia longicephala) simultaneously to parasite spores (the yeast Metschnikowia) and cues from predatory notonectids (Notonecta glauca). In response to the parasite, D. longicephala had a delayed maturation time and produced less and smaller offspring, even though the parasite developed no spores. This suggests that hosts can successfully fight off the parasite invoking defensive costs. Some of these effects were altered or even reversed by the presence of predator cues. For example, time to maturity was further delayed when the Daphnia were exposed to both threats than under parasite stress alone. In addition, more offspring were produced in the presence of both threats, although parasites alone reduced their number. However, there was no effect of parasite exposure on the expression of morphological defenses. Our results imply that the impact of parasites on host species depends strongly on the presence of further threats. Similar types of experimental approaches may enhance our understanding of the effects of multiple stressors in natural systems.  相似文献   

20.
  1. Organisms in the wild are faced with multiple threats and a common response is a change in behaviour. To disentangle responses to several threats, we exposed two differently sized species of the freshwater invertebrate Daphnia to solar ultraviolet radiation (UVR) and predation from either moving pelagic or benthic ambush predators.
  2. Using an advanced nanotechnology-based method, we tracked the three-dimensional movements of those mm-sized animals at the individual level. Each behavioural trial was performed both under conditions resembling night (no UVR) and day (UVR) and we examined patterns of the depth distribution and swimming speed by Daphnia across three treatments: no predator (control); bottom-dwelling damselfly (Calopteryx sp.); and fish (stickleback, Pungitius pungitius) predators. We also quantified the actual predation rate by the two predators on the two Daphnia species, Daphnia manga and Daphnia pulex.
  3. We show that individual Daphnia are able to identify predators with different feeding habitats, rank multiple and simultaneously occurring risks and respond in accordance with the actual threat; complex responses that are generally associated with larger animals.
  4. In a broader context, our results highlight and quantify how a cocktail of everyday threats is perceived and handled by invertebrates, which advances our understanding of species distribution in space and time, and thereby of population dynamics and ecosystem function in natural ecosystems.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号