首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase which participates in many important cellular processes such as cell adhesion and migration. However, the role of FAK in renal tubular epithelial-to-mesenchymal transition (EMT) is still unknown. FAK was knocked down by transfection of specific small interfering RNA (siRNA) in cultured HK-2 cells, then the cells were stimulated with transforming growth factor-beta 1 (TGF-β1). The expression of FAK, α-smooth muscle actin (α-SMA),E-cadherin, Akt, matrix metallopeptidase-9 (MMP-9),tissue inhibitor of metalloproteinase-1 (TIMP-1), and collagen IV were detected by RT-PCR, Western blot and immunofluorescence methods, respectively. Cell migration was determined by transwell assay. The results suggest that the expression of FAK was up-regulated in HK-2 cells when incubated with TGF-β1(10 μg/l), which was accompanied by reduced expression of E-cadherin and increased expression of α-SMA. All these changes were restored by FAK siRNA. Akt phosphorylation was induced by the treatment with TGF-β1, which was blocked by FAK siRNA. TGF-β1-induced down-regulation of E-cadherin was recovered by a PI3K/Akt inhibitor, LY294002, without affecting the expression of FAK. Functionally, TGF-β1 induced an increase in MMP-9 expression, as well as decreased expression of TIMP-1 and collagen IV, which were all restored by the FAK siRNA transfection. In addition, FAK siRNA significantly reduced TGF-β1-induced cells migration. In conclusion, FAK may play a crucial role in mediating TGF-β1-induced EMT through the activation of Akt pathway.  相似文献   

2.
Cdc42-interacting protein-4 (CIP4) is an F-BAR (Fer/CIP4 and Bin, amphiphysin, Rvs) family member that regulates membrane deformation and endocytosis, playing a key role in extracellular matrix (ECM) deposition and invasion of cancer cells. These processes are analogous to those observed during the initial epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells. The role of CIP4 in renal tubular EMT and renal tubulointerstitial fibrosis was investigated over the course of the current study, demonstrating that the expression of CIP4 increased in the tubular epithelia of 5/6-nephrectomized rats and TGF-β1 treated HK-2 cells. Endogenous CIP4 evidenced punctate localization throughout the cytosol, with elevated levels observed in the perinuclear region of HK-2 cells. Subsequent to TGF-β1 treatment, CIP4 expression increased, forming clusters at the cell periphery that gradually redistributed into the cytoplasm. Simultaneously, EMT induction in cells was confirmed by the prevalence of morphological changes, loss of E-cadherin, increase in α-SMA expression, and secretion of fibronectin. Overexpression of CIP4 promoted characteristics similar to those commonly observed in EMT, and small interfering RNA (siRNA) molecules capable of CIP4 knockdown were used to demonstrate reversed EMT. Cumulatively, results of the current study suggest that CIP4 promotes TGF-β1-induced EMT in tubular epithelial cells. Through this mechanism, CIP4 is capable of inducing ECM deposition and exacerbating progressive fibrosis in chronic renal failure.  相似文献   

3.
4.
The epithelial to mesenchymal transition (EMT) is a crucial event for renal fibrosis that can be elicited by TGF-β1/Smads signaling and its downstream mediator connective tissue growth factor (CTGF). As a distinct member of the TGF-β superfamily, Lefty A has been shown to be significantly downregulated in the kidneys of patients with severe ureteral obstruction, suggesting its role in renal fibrosis induced by obstructive nephropathy. In order to determine whether Lefty A prevents TGF-β1-induced EMT, human proximal tubule epithelial cells (HK-2) were stably transfected with Lefty A or control vectors and stimulated with 10 ng/ml TGF-β1 for 48 h. The results show that stimulation with TGF-β1 led to EMT including cell morphology changes, Smad2/3 signaling pathway activation, increased α-SMA, collagen type I, and CTGF expression, and decreased E-cadherin expression in mock-transfected HK-2 cells. Overexpression of Lefty A efficiently blocked p-Smad2/3 activation and attenuated all these EMT changes induced by TGF-β1. This finding suggests that Lefty A may serve as a potential new therapeutic target to inhibit or even reverse EMT during the process of renal fibrosis.  相似文献   

5.
The immunosuppressant drugs cyclosporine A (CsA) and sirolimus (SRL) used in combination demonstrated beneficial effects in organ transplantation, but this combination can also result in increased adverse effects. We previously showed that not only CsA treatment but also its combination with SRL decreased paracellular permeability in renal proximal tubular cells by modification of the tight junction proteins, claudins, through ERK1/2 signaling pathway. In this present study, evidence is presented that not only CsA but also the combination of CsA/SRL may have adverse effects on the barrier function of renal proximal cells, at least in part, through the expression of the cytokine transforming growth factor (TGF)-β(1). CsA treatment upregulated TGF-β(1) gene expression and this upregulation was enhanced when CsA and SRL were applied together. Addition of TGF-β(1) (5 ng/ml) altered the barrier function with increased transepithelial electrical resistance (TER) and claudin-1 expression. Use of a TGF-β(1)-blocking antibody or blockage of TGF-β(1) receptor kinase activity with SD208 prevented the CsA- and CsA/SRL-induced increase in TER. No evidence was found in the present studies to indicate that CsA or CsA/SRL treatment activated the TGF-β(1) Smad canonical signaling pathway, whereas addition of TGF-β(1) (5 ng/ml) did activate the Smad pathway. Addition of the ERK1/2 signaling inhibitor U0126 was able to prevent the TGF-β(1)-mediated increase in TER and claudin expression. It is most likely that the CsA- and CsA/SRL-induced increases in TGF-β(1) expression may not be sufficient to trigger the Smad pathway but however may trigger other TGF-β(1) receptor-mediated signaling including the ERK1/2 signaling pathway.  相似文献   

6.
Chronic renal disease is characterized by the accumulation of extracellular matrix proteins in the kidney and a loss of renal function. Tubulointerstitial fibrosis has been reported to play an important role in the progression of chronic renal diseases. Transforming growth factor-beta1 (TGF-beta1) is a profibrotic cytokine playing a major contribution to fibrotic kidney disease. Endoglin is a membrane glycoprotein of the TGF-beta1 receptor system. The aim of this work was to determine the time-course expression of renal type I and IV collagens, endoglin and TGF-beta1 in a rat model of induced tubulointerstitial fibrosis at 1, 3, 10 and 17 days after unilateral ureteral obstruction (UUO). In 17 days-ligated (L)-renal samples, a marked interstitial fibrosis was detected by Masson's trichromic and Sirius red staining, accompanied by an increase in type I collagen expression as shown by immunohistochemical analysis. Northern blot studies revealed a progressive increase in collagen alpha2(I), TGF-beta1 and endoglin mRNA expression in L kidneys when compared with the corresponding non-ligated (NL) kidneys from the animals subjected to left UUO. Seventeen days after UUO, significant increases in collagen alpha2(I), collagen alpha1(IV), TGF-beta1 and endoglin mRNA levels were detected in L kidneys vs NL kidneys. Significantly higher levels of the protein endoglin were found in L kidneys than in NL kidneys 10 and 17 days following obstruction. A marked increase expression for endoglin and TGF-beta1 was localized in renal interstitium by immunohistochemical studies 17 days after obstruction. In conclusion, this work reports the upregulation of endoglin coincident to that of its ligand TGF-beta1 in the kidneys of rats with progressive tubulointerstitial fibrosis induced by UUO.  相似文献   

7.
The epithelial-mesenchymal transition (EMT) of renal epithelial cells (RTECs) has pivotal roles in the development of renal fibrosis. Although the interaction of lymphocyte function-associated antigen 1 (LFA-1) on leukocytes and its ligand, intracellular adhesion molecule 1 (ICAM-1), plays essential roles in most inflammatory reactions, its pathogenetic role in the EMT of RTECs remains to be clarified. In the present study, we investigated the effect of the interaction of LFA-1 on peripheral blood mononuclear cells (PBMCs) and ICAM-1 on HK-2 cells after stimulation with TGF-β(1) on the EMT of RTECs. ICAM-1 was highly expressed in HK-2 cells. After TGF-β(1) stimulation, the chemokines CCL3 and CXCL12 increased on HK-2 cells. After co-culture of PBMCs and HK-2 cells pre-stimulated with TGF-β(1) (0.1 ng/ml) (HK-2-TGF-β(1) (0.1)), the expression of the active form of LFA-1 increased on PBMCs; however, total LFA-1 expression did not change. The expression of the active form of LFA-1 on PBMCs did not increase after co-culture with not CCL3 but CXCL12 knockdown HK-2-TGF-β(1) (0.1). The expression of epithelial cell junction markers (E-cadherin and occludin) further decreased and that of mesenchymal markers (vimentin and fibronectin) further increased in HK-2-TGF-β(1) (0.1) after co-culture with PBMCs for 24 hrs (HK-2-TGF-β(1) (0.1)-PBMCs). The phosphorylation of ERK 1/2 but not smad2 and smad3 increased in HK-2-TGF-β(1) (0.1)-PBMCs. The snail and slug signaling did not increase HK-2-TGF-β(1) (0.1)-PBMCs. Although the migration and invasion of HK-2 cells induced full EMT by a high dose (10.0 ng/ml) and long-term (72-96 hrs) TGF-β(1) stimulation increased, that of HK-2-TGF-β(1) (0.1)-PBMCs did not increase. These results suggested that HK-2 cells stimulated with TGF-β(1) induced conformational activation of LFA-1 on PBMCs by increased CXCL12. Then, the direct interaction of LFA-1 on PBMCs and ICAM-1 on HK-2 cells activated ERK1/2 signaling to accelerate the part of EMT of HK-2 cells induced by TGF-β(1).  相似文献   

8.
Abnormal function and fibrosis of endometrium caused by cows' endometritis pose difficult implantation of embryos and uterine cavity adhesions. 17β-Estradiol (E2) serves as the most effective aromatized estrogen, and its synthetase and receptors have been detected in the endometrium. Studies have demonstrated the positive role of estrogen in combating pathological fibrosis in diverse diseases. However, it is still unknown whether E2 regulates endometrium fibrosis in bovine endometritis. Herein, we evaluated the expression patterns of transforming growth factor-β1 (TGF-β1), epithelial-mesenchymal transformation (EMT)-related proteins (α-SMA, vimentin N-cadherin and E-cadherin), cytochrome P450 19A1 (CYP19A1), and G protein-coupled estrogen receptor (GPER) in bovine healthy endometrium and Inflammatory endometrium. Our data showed that the inflamed endometrium presented low CYP19A1 and GPER expression, and significantly higher EMT process versus the normal tissue. Moreover, we established a TGF-β1-induced fibrosis model in BEND cells, and found that E2 inhibited the EMT process of BEND cells in a dose-dependent manner. The anti-fibrotic effect of E2 was blocked by the GPER inhibitor G15, but not the estrogen nuclear receptors (ERs) inhibitor ICI182780. Moreover, the GPER agonist G1 inhibited fibrosis and Smad2/3 phosphorylation but increased the expression of TGFBR3 in BEND cells. Transfection with TGFBR3 small interfering RNA blocked the effect of G1 on fibrosis of BEND cells and upregulated the expression of P-Smad2/3. Our in vivo data also showed that E2 and G1 affected uterus fibrosis in mice endometritis model caused by LPS, which was associated with the inhibition of TGFBR3/Smad2/3 signaling. In conclusion, our data implied that E2 alleviates the fibrosis of TGF-β1-induced BEND cells, which is associated with the GPER mediation of TGFBR3/Smad2/3 signaling.  相似文献   

9.
10.
TGF-βs are multifunctional cytokines, but their roles in human renal homeostasis are not fully understood. This study investigated the role of TGF-β1 in the movement of human renal proximal tubular epithelial cells (PTECs) in a three-dimensional (3D) model. HKC-8 cells, a human PTEC line, were grown in a 3D collagen culture system. Cell movement was observed under a microscope. The gene expression was examined using PCR Arrays or qRT-PCR, and protein levels by Western blot. Here, we showed that the tight junction structure formed between adjacent cells of a HKC-8 cell colony in 3D cultures, and TGF-β1 stimulated their movement, evidenced by the appearance of fingerlike pseudopodia in the leader cells at the edge of the colonies. The cell movement of these human PTECs was correlated with up-regulation of both MMP2 and MMP9 and down-regulation or inactivation of PLAUR and PTK2B. Analysis of TGF-β signaling targets confirmed autocrine production of TGF-β2 and its cleaving enzyme furin as well as SNAI1 by TGF-β1stimulation. Knockdown of TGF-β2 expression disrupted TGF-β1-stimulated PTEC invasiveness, which was correlated with the down-regulation of MMP2 and MMP9. In conclusion, the activation of TGF-β receptor autocrine signaling by up-regulated TGF-β2 may play a pivotal role in TGF-β1-induced human PTEC movement, which could be mediated at least by both MMP2 and MMP9.  相似文献   

11.
Tumor necrosis factor-α (TNF-α) is suggested to induce mitochondrial dysfunction and apoptosis of renal tubular epithelial cells that possibly exacerbates renal function in chronic kidney disease (CKD). Here we investigated whether suppressor of cytokine signaling-1 (SOCS-1), an inhibitor of cytokine signaling, was involved in TNF-α-induced human renal tubular epithelial cells (HKCs) oxidative stress and apoptosis. TNF-α promoted the protein and mRNA expression of SOCS-1 in a time and dose dependent manner, along with increased cell apoptosis and activation of apoptosis signal regulating kinase-1(ASK1) in HKCs. Furthermore, overexpression of SOCS-1 in HKCs reduced TNF-α-mediated oxidative stress and apoptosis. Meanwhile, We also found that overexpression of SOCS-1 could regulate the activity of JAK/STAT signaling pathway. In addition, a specific JAK2 inhibitor, AG490, that both attenuated TNF-α-induced oxidative stress, also reduced apoptosis. Taken together, overexpression of SOCS-1 prevented TNF-α-mediated cell oxidative stress and apoptosis may be via suppression of JAK/STAT signaling pathway activation in HKCs.  相似文献   

12.
Lefty is a novel member of the transforming growth factor (TGF) supergene family which has the potential to antagonise actions of TGF-β1 - the main factor driving fibrotic disease in the kidney and in other organs. TGF-β1 can induce fibrosis through several mechanisms, including epithelial-mesenchymal transition (EMT) which contributes to myofibroblast accumulation in the renal interstitium. This study examined whether Lefty can antagonise TGF-β1 mediated EMT. A rat tubular epithelial cell line (NRK52E) was stably transfected with a Lefty expression plasmid (52E-Lefty) or control plasmid (52E-Control). 52E-Control cells underwent TGF-β1 induced EMT with up-regulation of α-smooth muscle actin (α-SMA), down-regulation of E-cadherin, and transition to an elongated fibroblast-like morphology. In contrast, 52E-Lefty cells were substantially protected from TGF-β1 induced EMT. Analysis of signalling pathways showed that 52E-Lefty cells had a marked reduction in TGF-β1 induced Smad activity and suppression of the secondary phase of JNK (but not p38) signalling. Treatment of NRK52E cells with a JNK inhibitor was shown to suppress TGF-β1 induced EMT. In conclusion, Lefty can antagonise TGF-β1 mediated EMT in renal tubular epithelial cells. Lefty may have potential as an anti-fibrotic molecule in the treatment of renal fibrosis.  相似文献   

13.
Transforming growth factor (TGF)-β2, gremlin and connective tissue growth factor (CTGF) are known to play important roles in the induction of epithelial mesenchymal transition (EMT) and extracellular matrix (ECM) synthesis. However, the complex functional relationship among gremlin, CTGF and TGF-β2 in the induction of EMT and ECM synthesis in human lens epithelial cells (HLECs) has not been reported. In this study, we found that TGF-β2, CTGF and gremlin can individually induce the expression of α-smooth muscle actin (α-SMA), fibronectin (Fn), collagen type I (COL-I), Smad2 and Smad3 in HLECs. Blockade of CTGF and gremlin effectively inhibited TGF-β2-induced expression of α-SMA, Fn, COL-I, Smad2, and Smad3 in HLECs. Furthermore blockade of Smad2 and Smad3 effectively inhibited CTGF and gremlin induced expression of α-SMA, Fn, COL-I in HLECs. In conclusion, TGF-β2, CTGF and gremlin are all involved in EMT and ECM synthesis via activation of Smad signaling pathway in HLECs. Specifically silencing CTGF and gremlin can effectively block the TGF-β2-induced EMT, ECM synthesis due to failure in activation of Smad signaling pathway in HLECs.  相似文献   

14.
Matricellular proteins play a critical role in the development of tubulointerstitial fibrosis and renal disease progression. Connective tissue growth factor (CTGF/CCN2), a CCN family member of matricellular proteins, represents an important mediator during development of glomerular and tubulointerstitial fibrosis in progressive kidney disease. We have recently reported that oncostatin M (OSM) is a potent inhibitor of TGF-β1-induced CTGF expression in human proximal tubular cells (PTC). In the present study we examined the role of TGF-β1- and OSM-induced signaling mechanisms in the regulation of CTGF mRNA expression in human proximal tubular HK-2 cells. Utilizing siRNA-mediated gene silencing we found that TGF-β1-induced expression of CTGF mRNA after 2h of stimulation at least partially depends on SMAD3 but not on SMAD2. In contrast to TGF-β1, OSM seems to exert a time-dependent dual effect on CTGF mRNA expression in these cells. While OSM led to a rapid and transient induction of CTGF mRNA expression between 15min and 1h of stimulation it markedly suppressed basal and TGF-β1-induced CTGF mRNA levels thereafter. Silencing of STAT1 or STAT3 attenuated basal CTGF mRNA levels indicating that both STAT isoforms may be involved in the regulation of basal CTGF mRNA expression. However, knockdown of STAT3 but not STAT1 prevented OSM-mediated suppression of basal and TGF-β1-induced upregulation of CTGF mRNA expression. Together these results suggest that the inhibitory effect of OSM on TGF-β1-induced CTGF mRNA expression is mainly driven by STAT3, thereby providing a signaling mechanism whereby OSM may contribute to tubulointerstitial protection.  相似文献   

15.
The cervix is central to the female genital tract immune response to pathogens and foreign male Ags introduced at coitus. Seminal fluid profoundly influences cervical immune function, inducing proinflammatory cytokine synthesis and leukocyte recruitment. In this study, human Ect1 cervical epithelial cells and primary cervical cells were used to investigate agents in human seminal plasma that induce a proinflammatory response. TGF-β1, TGF-β2, and TGF-β3 are abundant in seminal plasma, and Affymetrix microarray revealed that TGF-β3 elicits changes in Ect1 cell expression of several proinflammatory cytokine and chemokine genes, replicating principal aspects of the Ect1 response to seminal plasma. The differentially expressed genes included several induced in the physiological response of the cervix to seminal fluid in vivo. Notably, all three TGF-β isoforms showed comparable ability to induce Ect1 cell expression of mRNA and protein for GM-CSF and IL-6, and TGF-β induced a similar IL-6 and GM-CSF response in primary cervical epithelial cells. TGF-β neutralizing Abs, receptor antagonists, and signaling inhibitors ablated seminal plasma induction of GM-CSF and IL-6, but did not alter IL-8, CCL2 (MCP-1), CCL20 (MIP-3α), or IL-1α production. Several other cytokines present in seminal plasma did not elicit Ect1 cell responses. These data identify all three TGF-β isoforms as key agents in seminal plasma that signal induction of proinflammatory cytokine synthesis in cervical cells. Our findings suggest that TGF-β in the male partner's seminal fluid may influence cervical immune function after coitus in women, and potentially be a determinant of fertility, as well as defense from infection.  相似文献   

16.
17.
18.
The mechanisms that underlie the profibrotic effect of interleukin (IL)-1β are complicated and not fully understood. Recent evidence has suggested the involvement of the calcium-sensing receptor (CaSR) in tubular injury. Therefore, the current study aimed to investigate whether CaSR mediates IL-1β-induced collagen expression in cultured mouse inner medullary collecting duct cells (mIMCD3) and to determine the possible downstream signaling effector. The results showed that IL-1β significantly upregulated the expression of type I and III collagens in a concentration- and time-dependent manner. Moreover, CaSR was expressed in mIMCD3 cells, and its expression was increased by increasing the concentrations and times of IL-1β treatment. Selective inhibitors (Calhex231 or NPS2143) or the siRNA of CaSR attenuated the enhanced expression of type I and III collagens. Furthermore, IL-1β increased nuclear β-catenin protein levels and decreased cytoplasmic β-catenin expression in cells. In contrast, blockage of CaSR by the pharmacological antagonists or siRNA could partially attenuate such changes in the IL-1β-induced nuclear translocation of β-catenin. DKK1, an inhibitor of β-catenin nuclear translocation, further inhibited the expression of type I and III collagens in cells treated with IL-1β plus CaSR antagonist. In summary, these data demonstrated that IL-1β-induced collagen I and III expressions in collecting duct cells might be partially mediated by CaSR and the downstream nuclear translocation of β-catenin.  相似文献   

19.
20.
As a Ca2+ binding protein, calreticulin (CRT) has many functions and plays an important role in a variety of tumors. The role of CRT in TGF-β1-induced EMT is unknown. In this study, we demonstrated in vitro that TGF-β1-induced EMT elevated the expression of CRT in A549 lung cancer cells. Subsequently, we confirmed that overexpression CRT had no capacity to induce A549 cells EMT alone, but successfully enhanced TGF-β1-induced-EMT. Furthermore, knockdown of CRT in A549 cells significantly suppressed changes of EMT marks expression induced by TGF-β1. On treatment with TGF-β1, overexpression of CRT could enhance the phosphorylation of both Smad2 and Smad3. Consistently, the knockdown of CRT by siRNA-CRT could inhibit Smad signaling pathway activated by TGF-β1. These results indicated that CRT regulates EMT induced by TGF-β1 through Smad signaling pathway. Finally, TGF-β1-induced-EMT enhanced store-operated Ca2+ influx in A549 cells. CRT knockdown was able to abolish the effect of TGF-β1 on thapsigargin (TG) −induced Ca2+ release, but had failed to reduce store-operated Ca2+ influx. The alteration of intracellular Ca2+ concentration by TG or BAPTA-AM was able to regulate EMT induced by TGF-β1 through Smad signaling pathway. Together, these data identify that CRT regulates TGF-β1-induced-EMT through modulating Smad signaling. Furthermore, TGF-β1-induced-EMT is highly calcium-dependent, CRT was partly involved in it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号