首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Complex organisms may coordinate molecular responses to hypoxia by specialized avenues of communication across multiple tissues, but these mechanisms are poorly understood. Plasma-based, extracellular microRNAs have been described, yet their regulation and biological functions in hypoxia remain enigmatic. We found a unique pattern of release of the hypoxia-inducible microRNA-210 (miR-210) from hypoxic and reoxygenated cells. This microRNA is also elevated in human plasma in physiologic and pathologic conditions of altered oxygen demand and delivery. Released miR-210 can be delivered to recipient cells, and the suppression of its direct target ISCU and mitochondrial metabolism is primarily evident in hypoxia. To regulate these hypoxia-specific actions, prolyl-hydroxylation of Argonaute 2 acts as a molecular switch that reciprocally modulates miR-210 release and intracellular activity in source cells as well as regulates intracellular activity in recipient cells after miR-210 delivery. Therefore, Argonaute 2-dependent control of released miR-210 represents a unique communication system that integrates the hypoxic response across anatomically distinct cells, preventing unnecessary activity of delivered miR-210 in normoxia while still preparing recipient tissues for incipient hypoxic stress and accelerating adaptation.  相似文献   

3.
4.
Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1α (HIF-1α) and miR-210 expression and cell arrest in the G(0)/G(1) phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G(0)/G(1) phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells.  相似文献   

5.
Glioma contains abundant hypoxic regions which provide niches to promote the maintenance and expansion of glioma stem cells (GSCs), which are resistant to conventional therapies and responsible for recurrence. Given the fact that miR-210 plays a vital role in cellular adaption to hypoxia and in stem cell survival and stemness maintenance, strategies correcting the aberrantly expressed miR-210 might open up a new therapeutic avenue to hypoxia GSCs. In the present study, to explore the possibility of miR-210 as an effective therapeutic target to hypoxic GSCs, we employed a lentiviral-mediated anti-sense miR-210 gene transfer technique to knockdown miR-210 expression and analyze phenotypic changes in hypoxic U87s and SHG44s cells. We found that hypoxia led to an increased HIF-2α mRNA expression and miR-210 expression in GSCs. Knockdown of miR-210 decreased neurosphere formation capacity, stem cell marker expression and cell viability, and induced differentiation and G0/G1 arrest in hypoxic GSCs by partially rescued Myc antagonist (MNT) protein expression. Knockdown of MNT could reverse the gene expression changes and the growth inhibition resulting from knockdown of miR-210 in hypoxic GSCs. Moreover, knockdown of miR-210 led to increased apoptotic rate and Caspase-3/7 activity and decreased invasive capacity, reactive oxygen species (ROS) and lactate production and radioresistance in hypoxic GSCs. These findings suggest that miR-210 might be a potential therapeutic target to eliminate GSCs located in hypoxic niches.  相似文献   

6.
7.
Hypoxia, the most common feature in the tumor microenvironment, is closely related to tumor malignant progression and poor patient’s prognosis. Exosomes, initially recognized as cellular “garbage dumpsters”, are now known to be important mediums for mediating cellular communication in tumor microenvironment. However, the mechanisms of hypoxic tumor cell-derived exosomes facilitate colorectal cancer progression still need further exploration. In the present study, we found that exosomes from hypoxic colorectal cancer cells (H-Exos) promoted G1-S cycle transition and proliferation while preventing the apoptosis of colorectal cancer cells by transmitting miR-210-3p to normoxic tumor cells. Mechanistic investigation indicated that miR-210-3p from H-Exos elicited its protumoral effect via suppressing CELF2 expression. A preclinical study further confirmed that H-Exos could promote tumorigenesis in vivo. Clinically, the expression of miR-210-3p in circulating plasma exosomes was markedly upregulated in colorectal cancer patients, which were closely associated with multiple unfavorable clinicopathological features. Taken together, these results suggest that hypoxia may stimulate colorectal cancer cells to secrete miR-210-3p-enriched exosomes in tumor microenvironment, which elicit protumoral effects by inhibiting CELF2 expression. These findings provide new insights on the mechanism of colorectal cancer progression and potential therapeutic targets for colorectal cancer.  相似文献   

8.
Hypoxia plays an important role during the evolution of cancer cells and their microenvironment. Emerging evidence suggests communication between cancer cells and their microenvironment occurs via exosomes. This study aimed to clarify whether hypoxia affects angiogenic function through exosomes secreted from leukemia cells. We used the human leukemia cell line K562 for exosome-generating cells and human umbilical vein endothelial cells (HUVECs) for exosome target cells. Exosomes derived from K562 cells cultured under normoxic (20%) or hypoxic (1%) conditions for 24 h were isolated and quantitated by nanoparticle tracking analysis. These exosomes were then cocultured with HUVECs to evaluate angiogenic activity. The exosomes secreted from K562 cells in hypoxic conditions significantly enhanced tube formation by HUVECs compared with exosomes produced in normoxic conditions. Using a TaqMan low-density miRNA array, we found a subset of miRNAs, including miR-210, were significantly increased in exosomes secreted from hypoxic K562 cells. We demonstrated that cancer cells and their exosomes have altered miRNA profiles under hypoxic conditions. Although exosomes contain various molecular constituents such as proteins and mRNAs, altered exosomal compartments under hypoxic conditions, including miR-210, affected the behavior of endothelial cells. Our results suggest that exosomal miRNA derived from cancer cells under hypoxic conditions may partly affect angiogenic activity in endothelial cells.  相似文献   

9.
Hypoxia and inflammation are strictly interconnected both concurring to prostate cancer progression. Numerous reports highlight the role of tumor cells in the synthesis of pro-inflammatory molecules and show that hypoxia can modulate a number of these genes contributing substantially to the increase of cancer aggressiveness. However, little is known about the importance of the tumor phenotype in this process. The present study explores how different features, including differentiation and aggressiveness, of prostate tumor cell lines impact on the hypoxic remodeling of pro-inflammatory gene expression and malignancy. We performed our studies on three cell lines with increasing metastatic potential: the well differentiated androgen-dependent LNCaP and the less differentiated and androgen-independent DU145 and PC3. We analyzed the effect that hypoxic treatment has on modulating pro-inflammatory gene expression and evaluated the role HIF isoforms and NF-kB play in sustaining this process. DU145 and PC3 cells evidenced a higher normoxic expression and a more complete hypoxic induction of pro-inflammatory molecules compared to the well differentiated LNCaP cell line. The role of HIF1α and NF-kB, the master regulators of hypoxia and inflammation respectively, in sustaining the hypoxic pro-inflammatory phenotype was different according to cell type. NF-kB was observed to play a main role in DU145 and PC3 cells in which treatment with the NF-kB inhibitor parthenolide was able to counteract both the hypoxic pro-inflammatory shift and HIF1α activation but not in LNCaP cells. Our data highlight that tumor prostate cell phenotype contributes at a different degree and with different mechanisms to the hypoxic pro-inflammatory gene expression related to tumor progression.  相似文献   

10.
Accumulating evidence has revealed that various microRNAs are deregulated and involved in lung cancer development and metastasis. miR-210 is implicated in several cancer progression. However, the detailed biological function and role of miR-210 in lung adenocarcinoma remains unclear. Our current study was aimed to investigate the mechanism of miR-210 in lung adenocarcinoma progression. We observed that miR-210 was significantly upregulated in lung cancer cell lines (A549 and H1650) in comparison to BEAS-2B cells. In addition, we found that miR-210 was greatly elevated in lung adenocarcinoma tissues. Then, it was shown that overexpression of miR-210 was able to promote lung cancer cell proliferation and colony formation ability while inhibitors of miR-210 exhibited a reversed phenomenon. Subsequently, A549 and H1650 cell migration and invasion capacity were obviously restrained by miR-210 inhibition whereas induced by miR-210 mimics. Lysyl oxidase-like 4 (LOXL4), a member of the secreted copper-dependent amine oxidases has been found to be increased or decreased in different cancer types. Here, we confirmed that LOXL4 could serve as a downstream target of miR-210 and miR-210 promoted lung cancer progression via targeting LOXL4. In A549 and H1650 cells, knockdown of LOXL4 dramatically repressed lung cancer cell proliferation, migration, and invasion. In conclusion, our study implied that miR-210 might indicate a new perspective for lung cancer.  相似文献   

11.
12.
The importance of microRNAs (miRNAs) in human malignancies has been well recognized. Here, we report that the expression of microRNA-210 (miR-210) is down-regulated in human esophageal squamous cell carcinoma and derived cell lines. Marked decreases in the level of miR-210 were observed especially in poorly differentiated carcinomas. We found that miR-210 inhibits cancer cell survival and proliferation by inducing cell death and cell cycle arrest in G(1)/G(0) and G(2)/M. Finally, we identified fibroblast growth factor receptor-like 1 (FGFRL1) as a target of miR-210 in esophageal squamous cell carcinoma and demonstrated that FGFRL1 accelerates cancer cell proliferation by preventing cell cycle arrest in G(1)/G(0). Taken together, our findings show an important role for miR-210 as a tumor-suppressive microRNA with effects on cancer cell proliferation.  相似文献   

13.
Hypoxia is known to play critical roles in cell survival, angiogenesis, tumor invasion, and metastasis. Hypoxia mediated over-expression of hypoxia-inducible factor (HIF) has been shown to be associated with therapeutic resistance, and contributes to poor prognosis of cancer patients. Emerging evidence suggest that hypoxia and HIF pathways contributes to the acquisition of epithelial-to-mesenchymal transition (EMT), maintenance of cancer stem cell (CSC) functions, and also maintains the vicious cycle of inflammation-all which lead to therapeutic resistance. However, the precise molecular mechanism(s) by which hypoxia/HIF drives these events are not fully understood. Here, we show, for the first time, that hypoxia leads to increased expression of VEGF, IL-6, and CSC signature genes Nanog, Oct4 and EZH2 consistent with increased cell migration/invasion and angiogenesis, and the formation of pancreatospheres, concomitant with increased expression of miR-21 and miR-210 in human pancreatic cancer (PC) cells. The treatment of PC cells with CDF, a novel synthetic compound inhibited the production of VEGF and IL-6, and down-regulated the expression of Nanog, Oct4, EZH2 mRNAs, as well as miR-21 and miR-210 under hypoxia. CDF also led to decreased cell migration/invasion, angiogenesis, and formation of pancreatospheres under hypoxia. Moreover, CDF decreased gene expression of miR-21, miR-210, IL-6, HIF-1α, VEGF, and CSC signatures in vivo in a mouse orthotopic model of human PC. Collectively, these results suggest that the anti-tumor activity of CDF is in part mediated through deregulation of tumor hypoxic pathways, and thus CDF could become a novel, and effective anti-tumor agent for PC therapy.  相似文献   

14.
Fluctuating oxygen levels characterize the microenvironment of many cancers and tumor hypoxia is associated with increased invasion and metastatic potential concomitant with a poor prognosis. Similarly, the expression of lysyl oxidase (LOX) in breast cancer facilitates tumor cell migration and is associated with estrogen receptor negative status and reduced patient survival. Here we demonstrate that hypoxia/reoxygenation drives poorly invasive breast cancer cells toward a more aggressive phenotype by up-regulating LOX expression and catalytic activity. Specifically, hypoxia markedly increased LOX protein expression; however, catalytic activity (beta-aminopropionitrile inhibitable hydrogen peroxide production) was significantly reduced under hypoxic conditions. Moreover, poorly invasive breast cancer cells displayed a marked increase in LOX-dependent FAK/Src activation and cell migration following hypoxia/reoxygenation, but not in response to hypoxia alone. Furthermore, LOX expression is only partially dependent on hypoxia inducible factor-1 (HIF-1alpha) in poorly invasive breast cancer cells, as hypoxia mimetics and overexpression of HIF-1alpha could not up-regulate LOX expression to the levels observed under hypoxia. Clinically, LOX expression positively correlates with tumor progression and co-localization with hypoxic regions (defined by HIF-1alpha expression) in ductal carcinoma in situ and invasive ductal carcinoma primary tumors. However, positive correlation is lost in metastatic tumors, suggesting that LOX expression is independent of a hypoxic environment at later stages of tumor progression. This work demonstrates that both hypoxia and reoxygenation are necessary for LOX catalytic activity which facilitates breast cancer cell migration through a hydrogen peroxide-mediated mechanism; thereby illuminating a potentially novel mechanism by which poorly invasive cancer cells can obtain metastatic competency.  相似文献   

15.
16.
Repression of mitochondrial respiration represents an evolutionarily ancient cellular adaptation to hypoxia and profoundly influences cell survival and function; however, the underlying molecular mechanisms are incompletely understood. Primarily utilizing pulmonary arterial endothelial cells as a representative hypoxic cell type, we identify the iron-sulfur cluster assembly proteins (ISCU1/2) as direct targets for repression by the hypoxia-induced microRNA-210 (miR-210). ISCU1/2 facilitate the assembly of iron-sulfur clusters, prosthetic groups that are critical for electron transport and mitochondrial oxidation-reduction reactions. Under in vivo conditions of upregulating miR-210 and repressing ISCU1/2, the integrity of iron-sulfur clusters is disrupted. In turn, by repressing ISCU1/2 during hypoxia, miR-210 decreases the activity of prototypical iron-sulfur proteins controlling mitochondrial metabolism, including Complex I and aconitase. Consequently, miR-210 represses mitochondrial respiration and associated downstream functions. These results identify important mechanistic connections among microRNA, iron-sulfur cluster biology, hypoxia, and mitochondrial function, with broad implications for cellular metabolism and adaptation to cellular stress.  相似文献   

17.
18.
Devlin C  Greco S  Martelli F  Ivan M 《IUBMB life》2011,63(2):94-100
Multiple studies have consistently established that miR (microRNA)-210 induction is a feature of the hypoxic response in both normal and transformed cells. Here, we discuss the emerging biochemical functions of this miRNA and anticipate potential clinical applications. miR-210 is a robust target of hypoxia-inducible factor, and its overexpression has been detected in a variety of cardiovascular diseases and solid tumors. High levels of miR-210 have been linked to an in vivo hypoxic signature and associated with adverse prognosis in cancer patients. A wide spectrum of miR-210 targets have been identified, with roles in mitochondrial metabolism, angiogenesis, DNA repair, and cell survival. Such targets may broadly affect the evolution of tumors and other pathological settings, such as ischemic disorders. Harnessing the knowledge of miR-210's actions may lead to novel diagnostic and therapeutic approaches.  相似文献   

19.
Ma Y  Liang D  Liu J  Axcrona K  Kvalheim G  Stokke T  Nesland JM  Suo Z 《PloS one》2011,6(12):e29170
Hypoxia is an important environmental change in many cancers. Hypoxic niches can be occupied by cancer stem/progenitor-like cells that are associated with tumor progression and resistance to radiotherapy and chemotherapy. However, it has not yet been fully elucidated how hypoxia influences the stem-like properties of prostate cancer cells. In this report, we investigated the effects of hypoxia on human prostate cancer cell lines, PC-3 and DU145. In comparison to normoxia (20% O(2)), 7% O(2) induced higher expressions of HIF-1α and HIF-2α, which were associated with upregulation of Oct3/4 and Nanog; 1% O(2) induced even greater levels of these factors. The upregulated NANOG mRNA expression in hypoxia was confirmed to be predominantly retrogene NANOGP8. Similar growth rates were observed for cells cultivated under hypoxic and normoxic conditions for 48 hours; however, the colony formation assay revealed that 48 hours of hypoxic pretreatment resulted in the formation of more colonies. Treatment with 1% O(2) also extended the G(0)/G(1) stage, resulting in more side population cells, and induced CD44 and ABCG2 expressions. Hypoxia also increased the number of cells positive for ABCG2 expression, which were predominantly found to be CD44(bright) cells. Correspondingly, the sorted CD44(bright) cells expressed higher levels of ABCG2, Oct3/4, and Nanog than CD44(dim) cells, and hypoxic pretreatment significantly increased the expressions of these factors. CD44(bright) cells under normoxia formed significantly more colonies and spheres compared with the CD44(dim) cells, and hypoxic pretreatment even increased this effect. Our data indicate that prostate cancer cells under hypoxia possess greater stem-like properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号