共查询到20条相似文献,搜索用时 0 毫秒
1.
Haowei Li Zanjing Zhai Guangwang Liu Tingting Tang Zhen Lin Minghao Zheng An Qin Kerong Dai 《Biochemical and biophysical research communications》2013,430(3):951-956
Sanguinarine is a natural plant extract that has been supplemented in a number of gingival health products to suppress the growth of dental plaque. However, whether sanguinarine has any effect on teeth and alveolar bone health is still unclear. In this study, we demonstrated for the first time that sanguinarine could suppress osteoclastic bone resorption and osteoclast formation in a dose-dependent manner. Sanguinarine diminished the expression of osteoclast marker genes, including TRAP, cathepsin K, calcitonin receptor, DC-STAMP, V-ATPase d2, NFATc1 and c-fos. Further investigation revealed that sanguinarine attenuated RANKL-mediated IκBα phosphorylation and degradation, leading to the impairment of NF-κB signaling pathway during osteoclast differentiation. In addition, sanguinarine also affected the ERK signaling pathway by inhibiting RANKL-induced ERK phosphorylation. Collectively, this study suggested that sanguinarine has protective effects on teeth and alveolar bone health. 相似文献
2.
Moon JB Kim JH Kim K Youn BU Ko A Lee SY Kim N 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(1):163-169
SHIP is an SH2-containing inositol-5-phosphatase expressed in hematopoietic cells. It hydrolyzes the PI3K product PI(3,4,5)P(3) and blunts the PI3K-initiated signaling pathway. Although the PI3K/Akt pathway has been shown to be important for osteoclastogenesis, the molecular events involved in osteoclast differentiation have not been revealed. We demonstrate that Akt induces osteoclast differentiation through regulating the GSK3β/NFATc1 signaling cascade. Inhibition of the PI3K by LY294002 reduces formation of osteoclasts and attenuates the expression of NFATc1, but not that of c-Fos. Conversely, overexpression of Akt in bone marrow-derived macrophages (BMMs) strongly induced NFATc1 expression without affecting c-Fos expression, suggesting that PI3K/Akt-mediated NFATc1 induction is independent of c-Fos during RANKL-induced osteoclastogenesis. In addition, we found that overexpression of Akt enhances formation of an inactive form of GSK3β (phospho-GSK3β) and nuclear localization of NFATc1, and that overexpression of a constitutively active form of GSK3β attenuates osteoclast formation through downregulation of NFATc1. Furthermore, BMMs from SHIP knockout mice show the increased expression levels of phospho-Akt and phospho-GSK3β, as well as the enhanced osteoclastogenesis, compared with wild type. However, overexpression of a constitutively active form of GSK3β attenuates RANKL-induced osteoclast differentiation from SHIP-deficient BMMs. Our data suggest that the PI3K/Akt/GSK3β/NFATc1 signaling axis plays an important role in RANKL-induced osteoclastogenesis. 相似文献
3.
4.
5.
Ang ES Pavlos NJ Chim SM Feng HT Scaife RM Steer JH Zheng MH Xu J 《Journal of cellular biochemistry》2012,113(3):946-955
Pathological bone destruction (osteolysis) is a hallmark of many bone diseases including tumor metastasis to bone, locally osteolytic giant cell tumor (GCT) of bone, and Paget's disease. Paclitaxel is frequently prescribed in the treatment of several malignant tumors where it has been shown to exert beneficial effects on bone lesions. However, the mechanism(s) through which paclitaxel regulates osteoclast formation and function remain ill defined. In the present study, we demonstrate that paclitaxel dose-dependently inhibits receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis in both RAW264.7 cells and mouse bone marrow macrophage (BMM) systems. In addition, paclitaxel treatment reduces the bone resorptive activity of human osteoclasts derived from GCT of bone, and attenuates lipopolysaccharide (LPS)-induced osteolysis in a mouse calvarial model. Complementary cellular and biochemical analyses revealed that paclitaxel induces mitotic arrest of osteoclastic precursor cells. Furthermore, luciferase reporter gene assays and western blot analysis indicate that paclitaxel modulates key RANKL-induced activation pathways that are essential to osteoclast formation including NF-κB and ERK. Collectively, our findings demonstrate a role for paclitaxel in the regulation of osteoclast formation and function and uncover potential mechanism(s) through which paclitaxel alleviates pathological osteolysis. 相似文献
6.
Icariin inhibits RANKL-induced osteoclastogenesis via modulation of the NF-κB and MAPK signaling pathways 总被引:1,自引:0,他引:1
Qiang Xu Guiping Chen Xuqiang Liu Min Dai Bin Zhang 《Biochemical and biophysical research communications》2019,508(3):902-906
The receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-RANK regulatory axis is a major regulator of osteoclast differentiation and activation. Icariin, a flavonol glycoside isolated from the Epimedium herb, has been reported to prevents bone loss in ovariectomized mice and inhibits wear particle-induced osteolysis. However, the molecular mechanism through which icariin inhibits RANKL-induced osteoclastogenesis has not been fully understood. Therefore, we aimed to investigate the effects of icariin on RANKL-induced osteoclastogenesis and to elucidate the mechanism underlying this effect. Our results showed that RANKL-induced osteoclastogenesis was inhibited by icariin in bone marrow macrophages (BMMs) and RAW264.7?cells, and that this effect was due to suppression of NF-κB and mitogen-activated protein kinase (MAPK) activation. In addition, icariin inhibited F-actin ring formation and attenuated the bone resorption ability of mature osteoclasts. Collectively, our results indicate that icariin may be a promising potential candidate for the treatment of osteolytic diseases such as osteoporosis. Moreover, our findings lay the foundation for understanding and intervening in osteoclast-related diseases at the molecular level. 相似文献
7.
Diacylglycerol (DAG) and phosphatidic acid (PA) are lipids with unique functions as metabolic intermediates, basic membrane constituents, and second-signal components. Diacylglycerol kinases (DGK) regulate the levels of these two lipids, catalyzing the interconversion of one to the other. The DGK family of enzymes is composed of 10 isoforms, grouped into five subfamilies based on the presence of distinct regulatory domains. From its initial characterization as a type IV DGK to the generation of mouse models showing its importance in cardiac dysfunction and immune pathologies, diacylglycerol kinase ζ (DGKζ) has proved an excellent example of the critical role of lipid-metabolizing enzymes in the control of cell responses. Although the mechanism that regulates this enzyme is not well known, many studies demonstrate its subtle regulation and its strategic function in specific signaling and as part of adaptor protein complexes. These data suggest that DGKζ offers new opportunities for therapeutic manipulation of lipid metabolism. 相似文献
8.
Felicia S.H. Cheah Christoph Winkler Ethylin Wang Jabs Samuel S. Chong 《Mechanisms of development》2010,127(7-8):329-344
Zebrafish tgfβ3 is strongly expressed in a subpopulation of the migrating neural crest cells, developing pharyngeal arches and neurocranial cartilages. To study the regulatory role of tgfβ3 in head skeletal formation, we knocked down tgfβ3 in zebrafish and found impaired craniofacial chondrogenesis, evident by malformations in selected neurocranial and pharyngeal arch cartilages. Over-expressing tgfβ3 in embryos resulted in smaller craniofacial cartilages without any gross malformations. These defects suggest that tgfβ3 is required for normal chondrogenesis. To address the cellular mechanisms that lead to the observed malformations, we analyzed cranial neural crest development in morphant and tgfβ3 over-expressing fish. We observed reduced pre-migratory and migratory cranial neural crest, the precursors of the neurocranial cartilage and pharyngeal arches, in tgfβ3 knockdown embryos. In contrast, only the migratory neural crest was reduced in embryos over-expressing tgfβ3. This raised the possibility that the reduced number of cranial neural crest cells is a result of increased apoptosis. Consistent with this, markedly elevated TUNEL staining in the midbrain and hindbrain, and developing pharyngeal arch region was observed in morphants, while tgfβ3 over-expressing embryos showed marginally increased apoptosis in the developing pharyngeal arch region. We propose that both Tgfβ3 suppression and over-expression result in reduced chondrocyte and osteocyte formation, but to different degrees and through different mechanisms. In Tgfβ3 suppressed embryos, this is due to impaired formation and survival of a subpopulation of cranial neural crest cells through markedly increased apoptosis in regions containing the cranial neural crest cells, while in Tgfβ3 over-expressing embryos, the milder phenotype is also due to a slightly elevated apoptosis in these regions. Therefore, proper cranial neural crest formation and survival, and ultimately craniofacial chondrogenesis and osteogenesis, are dependent on tight regulation of Tgfβ3 protein levels in zebrafish. 相似文献
9.
New developments regarding the structure and in vivo dynamics of protein kinase B (PKB/Akt) have been recently exposed. Here, we specifically review how the use of multi-disciplinary approaches has resulted in reaching the recent progress made to relate the quaternary structure of PKB to its in vivo function. Using X-ray crystallography, the structure of PKB pleckstrin homology (PH) and kinase domains was determined separately. The molecular mechanisms involved in (a) the binding of the phosphoinositides to the PH domain and (b) the activation of the kinase with the rearrangement of the catalytic site and substrate binding were determined. In vitro, nuclear magnetic resonance and circular dychroism studies gave complementary information on the interaction of the PH domain with the phosphoinositides. However, the molecular nature and the function of the interactions between the PKB domains could not be deduced from the X-ray data since the full-length PKB has not been crystallised. In vitro, dynamic information on the inter-domain conformational changes related to PKB activation states emerged with the use of tandem mass spectrometry. Cell imaging and Förster resonance energy transfer provided in vivo dynamics. Molecular modelling and dynamic simulations in conjunction with mutagenesis and biochemical analysis were used to investigate the complex interactions between the PKB domains in vivo and understand at the molecular level how it linked to its activity. The compilation of the information obtained on the 3-D structure and the spatiotemporal dynamics of this widely studied oncogene could be applied to the study of other proteins. This inter-disciplinary approach led to a more profound understanding of PKB complex activation mechanism in vivo that will shed light onto new ideas and possibilities for modulating its activity. 相似文献
10.
Wang HY Juo LI Lin YT Hsiao M Lin JT Tsai CH Tzeng YH Chuang YC Chang NS Yang CN Lu PJ 《Cell death and differentiation》2012,19(6):1049-1059
WW domain-containing oxidoreductase (WWOX), a putative tumour suppressor, is suggested to be involved in the hyperphosphorylation of Alzheimer's Tau. Tau is a microtubule-associated protein that has an important role in microtubule assembly and stability. Glycogen synthase kinase 3β (GSK3β) has a vital role in Tau hyperphosphorylation at its microtubule-binding domains. Hyperphosphorylated Tau has a low affinity for microtubules, thus disrupting microtubule stability. Bioinformatics analysis indicated that WWOX contains two potential GSK3β-binding FXXXLI/VXRLE motifs. Immunofluorescence, immunoprecipitation and molecular modelling showed that WWOX interacts physically with GSK3β. We demonstrated biochemically that WWOX can bind directly to GSK3β through its short-chain alcohol dehydrogenase/reductase domain. Moreover, the overexpression of WWOX inhibited GSK3β-stimulated S396 and S404 phosphorylation within the microtubule domains of Tau, indicating that WWOX is involved in regulating GSK3β activity in cells. WWOX repressed GSK3β activity, restored the microtubule assembly activity of Tau and promoted neurite outgrowth in SH-SY5Y cells. Conversely, RNAi-mediated knockdown of WWOX in retinoic acid (RA)-differentiated SH-SY5Y cells inhibited neurite outgrowth. These results suggest that WWOX is likely to be involved in regulating GSK3β activity, reducing the level of phosphorylated Tau, and subsequently promoting neurite outgrowth during neuron differentiation. In summary, our data reveal a novel mechanism by which WWOX promotes neuronal differentiation in response to RA. 相似文献
11.
Yelin Mao Liangliang Wang Ye Zhu Yu Liu Hongwei Dai Jianping Zhou Dechun Geng Lin Wang Yong Ji 《Journal of molecular histology》2018,49(1):75-84
Orthodontic force-induced osteogenic differentiation and bone formation at tension sites play a critical role in orthodontic tooth movement. However, the molecular mechanism underlying this phenomenon is poorly understood. In the current study, we investigated the involvement of the GSK-3β/β-catenin signaling pathway, which is critical for bone formation during tooth movement. We established a rat tooth movement model to test the hypothesis that orthodontic force may stimulate bone formation at the tension site of the moved tooth and promote the rate of tooth movement via regulation of the GSK-3β/β-catenin signaling pathway. Our results showed that continued mechanical loading increased the distance between the first and second molar in rats. In addition, the loading force increased bone formation at the tension site, and also increased phospho-Ser9-GSK-3β expression and β-catenin signaling pathway activity. Downregulation of GSK-3β activity further increased bone parameters, including bone mineral density, bone volume to tissue volume and trabecular thickness, as well as ALP- and osterix-positive cells at tension sites during tooth movement. However, ICG-001, the β-catenin selective inhibitor, reversed the positive effects of GSK-3β inhibition. In addition, pharmaceutical inhibition of GSK-3β or local treatment with β-catenin inhibitor did not influence the rate of tooth movement. Based on these results, we concluded that GSK-3β/β-catenin signaling contributes to the bone remodeling induced by orthodontic forces, and can be used as a potential therapeutic target in clinical dentistry. 相似文献
12.
Makiko Fujii Hayao Nakanishi Takeshi Toyoda Ichidai Tanaka Yutaka Kondo Hirotaka Osada Yoshitaka Sekido 《Cell cycle (Georgetown, Tex.)》2012,11(18):3373-3379
Malignant mesothelioma (MM) is a neoplasm that arises from serosal surfaces of the pleural, peritoneal and pericardial cavities with worldwide incidence, much of which is caused by asbestos exposure. Patients suffer from pain and dyspnea due to direct invasion of the chest wall, lungs and vertebral or intercostal nerves by masses of thick fibrotic tumors. Although there has been recent progress in the clinical treatment, current therapeutic approaches do not provide satisfactory results. Therefore, development of a molecularly targeted therapy for MM is urgently required. Our recent studies suggest that normal mesothelial and MM cell growth is promoted by TGFβ, and that TGFβ signaling together with intrinsic disturbances in neurofibromatosis type 2 (NF2) and Hippo signaling cascades in MM cells converges upon further expression of connective tissue growth factor (CTGF). The formation of a YAP-TEAD4–Smad3-p300 complex on the specific CTGF promoter site with an adjacent TEAD and Smad binding motif is a critical and synergistic event caused by the dysregulation of these two distinct cascades. Furthermore, we demonstrated the functional importance of CTGF through the mouse studies and human histological analyses, which may elucidate the clinical features of MM with severe fibrosis in the thoracic cavity. 相似文献
13.
《Cell cycle (Georgetown, Tex.)》2013,12(18):3373-3379
Malignant mesothelioma (MM) is a neoplasm that arises from serosal surfaces of the pleural, peritoneal and pericardial cavities with worldwide incidence, much of which is caused by asbestos exposure. Patients suffer from pain and dyspnea due to direct invasion of the chest wall, lungs and vertebral or intercostal nerves by masses of thick fibrotic tumors. Although there has been recent progress in the clinical treatment, current therapeutic approaches do not provide satisfactory results. Therefore, development of a molecularly targeted therapy for MM is urgently required. Our recent studies suggest that normal mesothelial and MM cell growth is promoted by TGFβ, and that TGFβ signaling together with intrinsic disturbances in neurofibromatosis type 2 (NF2) and Hippo signaling cascades in MM cells converges upon further expression of connective tissue growth factor (CTGF). The formation of a YAP-TEAD4–Smad3-p300 complex on the specific CTGF promoter site with an adjacent TEAD and Smad binding motif is a critical and synergistic event caused by the dysregulation of these two distinct cascades. Furthermore, we demonstrated the functional importance of CTGF through the mouse studies and human histological analyses, which may elucidate the clinical features of MM with severe fibrosis in the thoracic cavity. 相似文献
14.
15.
Reactive oxygen species (ROS) are generated in the vascular wall upon stimulation by proinflammatory cytokines and are important mediators of diverse cellular responses that occur as a result of vascular injury. Members of the NADPH oxidase (NOX) family of proteins have been identified in vascular smooth muscle (VSM) cells as important sources of ROS. In this study, we tested the hypothesis that NOX4 is a proximal mediator of IL-1β-dependent activation of PKCδ and increases IL-1β-stimulated c-Jun kinase (JNK) signaling in primary rat aortic VSM cells. We found that stimulation of VSM cells with IL-1β increased PKCδ activity and intracellular ROS generation. SiRNA silencing of NOX4 but not NOX1 ablated the IL-1β-dependent increase in ROS production. Pharmacological inhibition of PKCδ activity as well as siRNA depletion of PKCδ or NOX4 blocked the IL-1β-dependent activation of JNK. Further studies showed that the IL-1β-dependent upregulation of inducible NO synthase expression was inhibited through JNK inhibition and NOX4 silencing. Taken together, these results indicate that IL-1β-dependent activation of PKCδ is modulated by NOX4-derived ROS. Our study positions PKCδ as an important redox-sensitive mediator of IL-1β-dependent signaling and downstream activation of inflammatory mediators in VSM cells. 相似文献
16.
The extracellular matrix (ECM) provides the microenvironment that is pivotal for cell growth, motility, attachment, and differentiation. Advances in cell culture techniques have led to the development of cell-derived ECM model systems that are more reflective of the in vivo architecture of the ECM in tissue. In this study, a fibroblast-derived ECM (fd-ECM) was used to study the feedback regulation of type I collagen synthesis in fibroblasts. Fibroblasts plated on a preformed fd-ECM showed a significant decrease in the production of type I collagen and pro-α2(1) collagen mRNA compared to cells grown in the absence of a matrix. Function-blocking antibodies showed that this downregulation of type I collagen gene expression is mediated via α2β1 integrin. The use of several kinase inhibitors and a dominant negative ras construct (N17Ras) showed that the matrix-mediated downregulation of COL1A2 occurs via Ras-dependent activation of the MEK/ERK signaling pathway. Deletion analysis of the COL1A2 promoter implicated the region between -375 and -107 as containing a potential matrix responsive element. The use of Sp1 siRNA demonstrated that Sp1 is an important mediator of this feedback inhibition. This study provides some new insights into the feedback regulation of COL1A2 gene expression. 相似文献
17.
Madaro L Marrocco V Fiore P Aulino P Smeriglio P Adamo S Molinaro M Bouché M 《Molecular biology of the cell》2011,22(8):1409-1419
Fusion of mononucleated myoblasts to form multinucleated myofibers is an essential phase of skeletal myogenesis, which occurs during muscle development as well as during postnatal life for muscle growth, turnover, and regeneration. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, and recently focal adhesion kinase (FAK), has been proposed as a key mediator of myoblast fusion. Here we focused on the possible role of PKC, the PKC isoform predominantly expressed in skeletal muscle, in myoblast fusion. We found that the expression of PKC is strongly up-regulated following freeze injury-induced muscle regeneration, as well as during in vitro differentiation of satellite cells (SCs; the muscle stem cells). Using both PKC knockout and muscle-specific PKC dominant-negative mutant mouse models, we observed delayed body and muscle fiber growth during the first weeks of postnatal life, when compared with wild-type (WT) mice. We also found that myofiber formation, during muscle regeneration after freeze injury, was markedly impaired in PKC mutant mice, as compared with WT. This phenotype was associated with reduced expression of the myogenic differentiation program executor, myogenin, but not with that of the SC marker Pax7. Indeed in vitro differentiation of primary muscle-derived SCs from PKC mutants resulted in the formation of thinner myotubes with reduced numbers of myonuclei and reduced fusion rate, when compared with WT cells. These effects were associated to reduced expression of the profusion genes caveolin-3 and β1D integrin and to reduced activation/phosphorylation of their up-stream regulator FAK. Indeed the exogenous expression of a constitutively active mutant form of PKC in muscle cells induced FAK phosphorylation. Moreover pharmacologically mediated full inhibition of FAK activity led to similar fusion defects in both WT and PKC-null myoblasts. We thus propose that PKC signaling regulates myoblast fusion by regulating, at least in part, FAK activity, essential for profusion gene expression. 相似文献
18.
19.
Kim YS Kim MJ Koo TH Kim JD Koun S Ham HJ Lee YM Rhee M Yeo SY Huh TL 《Biochemical and biophysical research communications》2012,423(1):140-146
During vertebrate heart valve formation, Wnt/β-catenin signaling induces BMP signals in atrioventricular canal (AVC) myocardial cells and underlying AVC endocardial cells then undergo endothelial-mesenchymal transdifferentiation (EMT) by receiving this BMP signals. Histone deacetylases (HDACs) have been implicated in numerous developmental processes by regulating gene expression. However, their specific roles in controlling heart valve development are largely unexplored. To investigate the role of HDACs in vertebrate heart valve formation, we treated zebrafish embryos with trichostatin A (TSA), an inhibitor of class I and II HDACs, from 36 to 48 h post-fertilization (hpf) during which heart looping and valve formation occur. Following TSA treatment, abnormal linear heart tube development was observed. In these embryos, expression of AVC myocardial bmp4 and AVC endocardial notch1b genes was markedly reduced with subsequent failure of EMT in the AVC endocardial cells. However, LiCl-mediated activation of Wnt/β-catenin signaling was able to rescue defective heart tube formation, bmp4 and notch1b expression, and EMT in the AVC region. Taken together, our results demonstrated that HDAC activity plays a pivotal role in vertebrate heart tube formation by activating Wnt/β-catenin signaling which induces bmp4 expression in AVC myocardial cells. 相似文献
20.
Evisabel A. Craig Richard R. Vaillancourt Todd D. Camenisch 《Experimental cell research》2010,316(20):3397-3405
In the developing heart, the epicardium is a major source of progenitor cells that contribute to the formation of the coronary vessel system. These epicardial progenitors give rise to the different cellular components of the coronary vasculature by undergoing a number of morphological and physiological changes collectively known as epithelial to mesenchymal transformation (EMT). However, the specific signaling mechanisms that regulate epicardial EMT are yet to be delineated. In this study we investigated the role of TGFβ2 and hyaluronan (HA) during epicardial EMT and how signals from these two molecules are integrated during this important process. Here we show that TGFβ2 induces MEKK3 activation, which in turn promotes ERK1/2 and ERK5 phosphorylation. TGFβ2 also increases Has2 expression and subsequent HA production. Nevertheless, inhibition of MEKK3 kinase activity, silencing of ERK5 or pharmacological disruption of ERK1/2 activation significantly abrogates this response. Thus, TGFβ2 promotes Has2 expression and HA production through a MEKK3/ERK1/2/5-dependent cascade. Furthermore, TGFβ2 is able to induce epicardial cell invasion and differentiation but not proliferation. However, inhibition of MEKK3-dependent pathways, degradation of HA by hyaluronidases or blockade of CD44, significantly impairs the biological response to TGFβ2. Taken together, these findings demonstrate that TGFβ2 activation of MEKK3/ERK1/2/5 signaling modulates Has2 expression and HA production leading to the induction of EMT events. This is an important and novel mechanism showing how TGFβ2 and HA signals are integrated to regulate changes in epicardial cell behavior. 相似文献