首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
In March 2018, an immature female sharpnose sevengill shark Heptranchias perlo was caught by a commercial bottom trawler in the Ibiza Channel. This represents the first substantiated record of the species around the Balearic Islands (GSA05) and the second record from off the Spanish Levantine coasts. This paper includes a review of the records of H. perlo in the Mediterranean as an aid to future conservation assessments.  相似文献   

2.
The nurse shark, Ginglymostoma cirratum, is an obligate suction feeder that preys on benthic invertebrates and fish. Its cranial morphology exhibits a suite of structural and functional modifications that facilitate this mode of prey capture. During suction‐feeding, subambient pressure is generated by the ventral expansion of the hyoid apparatus and the floor of its buccopharyngeal cavity. As in suction‐feeding bony fishes, the nurse shark exhibits expansive, compressive, and recovery kinematic phases that produce posterior‐directed water flow through the buccopharyngeal cavity. However, there is generally neither a preparatory phase nor cranial elevation. Suction is generated by the rapid depression of the buccopharyngeal floor by the coracoarcualis, coracohyoideus, and coracobranchiales muscles. Because the hyoid arch of G. cirratum is loosely connected to the mandible, contraction of the rectus cervicis muscle group can greatly depress the floor of the buccopharyngeal cavity below the depressed mandible, resulting in large volumetric expansion. Suction pressures in the nurse shark vary greatly, but include the greatest subambient pressures reported for an aquatic‐feeding vertebrate. Maximum suction pressure does not appear to be related to shark size, but is correlated with the rate of buccopharyngeal expansion. As in suction‐feeding bony fishes, suction in the nurse shark is only effective within approximately 3 cm in front of the mouth. The foraging behavior of this shark is most likely constrained to ambushing or stalking due to the exponential decay of effective suction in front of the mouth. Prey capture may be facilitated by foraging within reef confines and close to the substrate, which can enhance the effective suction distance, or by foraging at night when it can more closely approach prey. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
L. Skubiszak 《Biophysics》2006,51(5):692-700
Contemporary experimental methods do not allow unequivocal determination of molecular structural events during muscle contraction. To analyze existing contradictions, an original computer program has been developed. This program reconstructs the hexagonal lattice of a sarcomere for different states of muscle and finds the most realistic structure by comparing the calculated Fourier spectrum with the actual diffraction pattern. Previously, the new approach allowed reconstructing the actual structure of a myosin filament from mammalian striated muscle (http://zope.ibib.waw.pl/pspk). In this work, the thin filament is reconstructed for three states: relaxed, activated, and contracting. The good fit between the calculated Fourier spectra and the actual diffraction patterns taken from the literature suggests that the thin filament owing to its flexibility may play an active role in muscle contraction, as myosin cross-bridges do.  相似文献   

4.
We describe the ontogeny of the axial skeleton and median fins of the Southeast Asian freshwater puffer Monotrete leiurus, based on a reared developmental series. Most elements of the axial skeleton in M. leiurus arise in membrane bone. Only the base of the anterior three neural arches, the base of the hemal arches of the third preural centrum, the neural and hemal arches and spines of the second preural centrum, the parhypural, the two hypural plates, and the single epural are preformed in cartilage. In contrast to most teleosts, the proximal-middle radials of the dorsal and anal fins are upright and symmetrical and their distal tips coalesce during development to form a deep band of cartilage, from which the spherical distal radials are spatially separated.  相似文献   

5.
Intracellular pH (pHi) and Na (ana i) were recorded in isolated sheep cardiac Purkinje fibres using ion-selective microelectrodes while simultaneously recording twitch tension. A fall of (pHi) stimulated acid-extrusion via sarcolemmal Na-H exchange but the extrusion was inhibited by reducing extracellular pH (pHo), indicating an inhibitory effect of external H ions upon the exchanger. Intracellular acidosis can reduce contraction by directly reducing myofibrillar Ca2– sensitivity. The activation of Na-H exchange at low (pHi) can offset this direct inhibitory effect of H ions since exchange-activation elevates ana i which then indirectly elevates Cai 2+ (via Na-Ca exchange) thus tending to restore tension. This protection of contraction during intracellular acidosis can be removed if extracellular (pHi) is also allowed to fall since, under these conditions, Na-H exchange is inhibited.  相似文献   

6.
Research longline sampling was conducted seasonally from December 2006 to February 2009 to investigate the occurrence and population structure of the broadnose sevengill shark Notorynchus cepedianus in coastal areas of south-east Tasmania. Notorynchus cepedianus showed a consistent temporal trend in seasonal occurrence in Norfolk Bay characterized by high abundances in summer to near absence in winter. This pattern was less pronounced in the Derwent Estuary, where fish were still caught during winter. The absence of smaller total length (L(T) ) classes (<80 cm) from the catches suggests that N. cepedianus are not using these coastal habitats as nursery areas. Of the 457 individuals tagged, 68 (15%) were recaptured. Time at liberty ranged from 6 days to almost 4 years and all but one of the recaptures were caught in its original tagging location, suggesting site fidelity. The large number of N. cepedianus in these coastal systems over summer indicates that these areas are important habitats for this species and that N. cepedianus may have a significant influence on community dynamics through both direct and indirect predator-prey interactions.  相似文献   

7.
The homologies of jaw muscles among archosaurs and other sauropsids have been unclear, confounding interpretation of adductor chamber morphology and evolution. Relevant topological patterns of muscles, nerves, and blood vessels were compared across a large sample of extant archosaurs (birds and crocodylians) and outgroups (e.g., lepidosaurs and turtles) to test the utility of positional criteria, such as the relative position of the trigeminal divisions, as predictors of jaw muscle homology. Anatomical structures were visualized using dissection, sectioning, computed tomography (CT), and vascular injection. Data gathered provide a new and robust view of jaw muscle homology and introduce the first synthesized nomenclature of sauropsid musculature using multiple lines of evidence. Despite the great divergences in cephalic morphology among birds, crocodylians, and outgroups, several key sensory nerves (e.g., n. anguli oris, n. supraorbitalis, n. caudalis) and arteries proved useful for muscle identification, and vice versa. Extant crocodylians exhibit an apomorphic neuromuscular pattern counter to the trigeminal topological paradigm: the maxillary nerve runs medial, rather than lateral to M. pseudotemporalis superficialis. Alternative hypotheses of homology necessitate less parsimonious interpretations of changes in topology. Sensory branches to the rictus, external acoustic meatus, supraorbital region, and other cephalic regions suggest conservative dermatomes among reptiles. Different avian clades exhibit shifts in some muscle positions, but maintain the plesiomorphic, diapsid soft-tissue topological pattern. Positional data suggest M. intramandibularis is merely the distal portion of M. pseudotemporalis separated by an intramuscular fibrocartilaginous sesamoid. These adductor chamber patterns indicate multiple topological criteria are necessary for interpretations of soft-tissue homology and warrant further investigation into character congruence and developmental connectivity.  相似文献   

8.
FMRFamide-related peptides of insects are particularly important because of their possible function as neurohormones and neuromodulators on a wide variety of tissues. Part of this study was an investigation of the immunofluorescent staining of motor nerves which arise in the metathoracic ganglion, examined in wholemount using an antiserum that recognizes extended -RFamide peptides (generally recognized to be of the FMRFamide family). This antiserum revealed immunochemical staining of numerous cell bodies in the metathoracic ganglion and of axons in peripheral nerve 5, a large nerve which contains both motor and sensory fibres. Axons staining positive for FMRFamide-related peptides were traced in nerve 5 as far as the femur-tibia joint, and into the first (sensory-motor) and third (motor only) ramus of nerve 5. Reverse-phase HPLC with radioimmunoassay revealed a peak of FMRFamide-related peptide activity in nerve 5 that was coincident with a peak found when thoracic ganglia were processed in the same fashion. A physiological assay was devised to test the ability of various non-native peptides to alter the characteristics of contraction of skeletal muscles of the legs. Using neurally evoked contractions of coxal depressor muscles of the metathoracic leg it was determined that several non-native peptides could potentiate muscle contractions.The results of this study suggest that muscles of the legs receive innervation by identifiable, FMRFamide-related peptide-containing neurons and that the release of peptide(s) at the muscle may be yet another method of modulating the mechanics of muscle contraction.Abbreviations D f fast depressor motor neuron - D s slow depressor motor neuron - DU M dorsal unpaired median - FaRPs FMRFamide related peptides - FEFe fast extensor of the femur - FFFe fast flexor of the femur - FITC fluorescein isothiocyanate - FPC fast promotor of the coxa - FPT fast flexor of the pretarsus - I 1–3 inhibitory motor neurons - LMS leucomyosuppressin, N5 nerve 5 - N5r1 first ramus of nerve 5 - PBS phosphate buffered saline - PLCl posterior lateral cluster - RIA radioimmunoassay - SETi slow extensor of the tibia - SFTi slow flexor of the tibia - TFA trifluoroacetic acid - VMCl ventral median cluster  相似文献   

9.
To establish a difference of the relative contents (RCs) of elements among the cervical, thoracic, and lumbar intervertebral disks and its age-related change, the intervertebral disks between the axis and the sacrum, which were resected from the nine cadavers who died at 53 to 99 yr old, were analyzed by inductively coupled atomic plasma emission spectrometry. It was found that both the RCs of calcium and phosphorus were high in the cervical disks, especially the highest in the disk between the 6th and 7th cervical vertebrae, and lower in the order of the cervical, thoracic, and lumbar intervertebral disks. In regard to the RCs of sulfur and magnesium, there were no significant differences among the cervical, thoracic, and lumbar intervertebral disks. In addition, it was found that both the RCs of calcium and phosphorus in the cervical intervertebral disks started to increase in the sixth decade of life, became the highest in the eighth decade of life, and then decreased.  相似文献   

10.
When animals grow, the functional demands that they experience often change as a consequence of their increasing body size. In this study, we examined the feeding biomechanics in esocid species that represent different size classes (small, Esox americanus; intermediate, Esox niger; large, Esox lucius), and how their bite forces and associated functional variables change as they grow. In order to evaluate bite performance through ontogeny, we dissected and measured dimensions of the feeding apparatus and the adductor mandibulae muscle complex with its segmentum facialis subdivisions such as the ricto‐malaris, stegalis and endoricto‐malaris across a wide range of body sizes. The collected morphological data was used as input variables for a published anatomical model to simulate jaw function in these fish species. Maximum bite forces for both anterior bite and posterior bite increased in isometry in E. americanus and E. niger. The posterior bite of E. lucius also increases in isometry, however, the anterior bite increases in positive allometry. Intraspecific comparison within E. lucius indicated the increase of bite forces in more developed individuals accelerated after the fish grew out of fingerling stage. In addition, our analysis indicated functional differentiation between subdivisions of the adductor mandibulae segmentum facialis, as well as interspecific differences in the pattern of contribution to the bite performance by these subdivisions. Our study provides insights into not only the musculoskeletal basis of the jaw function of esocid species, but also the feeding capacity of this species in relation to the functional demands it faces as one of the top predators in lake and river systems. J. Morphol. 277:1447–1458, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
GDF11 is a secreted factor in the TGFß family of cytokines. Its nearest neighbor evolutionarily is myostatin, a factor discovered as being a negative regulator of skeletal muscle growth. High profile studies several years ago suggested that GDF11 declines with age, and that restoration of systemic GDF11 to ‘youthful’ levels is beneficial for several age-related conditions. Particularly surprising was a report that supplementation of GDF11 aided skeletal muscle regeneration, as its homolog, myostatin, has the opposite role. Given this apparent contradiction in functionality, multiple independent labs sought to discern differences between the two factors and better elucidate age-related changes in circulating GDF11, with most failing to reproduce the initial finding of declining GDF11 levels, and, importantly, all subsequent studies examining the effects of GDF11 on skeletal muscle described an inhibitory effect on regeneration – and that higher doses induce skeletal muscle atrophy and cachexia. There have also been several studies examining the effect of GDF11 and/or the downstream ActRII pathway on cardiac function, along with several interesting reports on bone. A review of the GDF11 literature, as it relates in particular to aging and skeletal muscle, cardiac and bone biology, is presented.  相似文献   

12.
13.
Here we describe the application of new and existing multiplex PCR methodologies for shark species molecular identification. Four multiplex systems (group ID, thresher sharks, hammerhead sharks and miscellaneous shark) were employed with primers previously described and some designed in this study, which allow for species identification after running PCR products through an agarose gel. This system was implemented for samples (bodies and fins) collected from unidentified sharks landed in the port of Buenaventura and from confiscated tissues obtained from illegal fishing around the Malpelo Island Marine Protected Area, Pacific Coast of Colombia. This method has allowed reliable identification, to date, of 407 samples to the genus and/or species levels, most of them (380) identified as the pelagic thresher shark (Alopias pelagicus). Another seven samples were identified as scalloped hammerhead sharks (Sphyrna lewini). This is an easy-to-implement and reliable identification method that could even be used locally to monitor shark captures in the main fishing ports of developed and developing countries.  相似文献   

14.
Isotocin is a fish analogue of the mammalian hormone oxytocin. To elucidate sites of action of isotocin (IT) in the upper esophageal sphincter (UES) muscle, a key muscle in swallowing, IT was applied after treatment with tetrodotoxin (TTX). Even after blocking nerve activity with TTX, IT relaxes the UES muscle in a concentration-dependent manner, suggesting that IT receptor(s) is present on the muscle cells. Similar relaxation was also obtained by application of 3-isobutyl-1-methylxanthine (IBMX), forskolin (FSK) and 8-bromo-adenosine, 3′,5′-cyclic monophosphate (8BrcAMP) after pretreatment with TTX, suggesting that the relaxing effect (postsynaptic action) of IT may be mediated by cAMP. In contrast to such relaxing effect, IT enhanced the UES contraction induced by repetitive electrical field stimulation (EFS). Such enhancement was blocked by an IT receptor antagonist, suggesting that this effect is also mediated by IT receptor(s). Similar enhancement was also induced by IBMX, FSK and 8BrcAMP, suggesting the enhancing effect is also mediated by cAMP. However, no enhancing effect of IT was observed when the muscle was stimulated by carbachol, or after treatment with curare or TTX, denying the postsynaptic modulatory action of IT and suggesting presynaptic action for IT, i.e., accelerating acetylcholine release. Summarizing these results, role of IT in precisely regulating the drinking rate in the seawater eel is discussed.  相似文献   

15.
Common (Callithrix jacchus) and pygmy (Cebuella pygmaea) marmosets and cotton‐top tamarins (Saguinus oedipus) share broadly similar diets of fruits, insects, and tree exudates. Marmosets, however, differ from tamarins in actively gouging trees with their anterior dentition to elicit tree exudates flow. Tree gouging in common marmosets involves the generation of relatively wide jaw gapes, but not necessarily relatively large bite forces. We compared fiber architecture of the masseter and temporalis muscles in C. jacchus (N = 18), C. pygmaea (N = 5), and S. oedipus (N = 13). We tested the hypothesis that tree‐gouging marmosets would exhibit relatively longer fibers and other architectural variables that facilitate muscle stretch. As an architectural trade‐off between maximizing muscle excursion/contraction velocity and muscle force, we also tested the hypothesis that marmosets would exhibit relatively less pinnate fibers, smaller physiologic cross‐sectional areas (PCSA), and lower priority indices (I) for force. As predicted, marmosets display relatively longer‐fibered muscles, a higher ratio of fiber length to muscle mass, and a relatively greater potential excursion of the distal tendon attachments, all of which favor muscle stretch. Marmosets further display relatively smaller PCSAs and other features that reflect a reduced capacity for force generation. The longer fibers and attendant higher contraction velocities likely facilitate the production of relatively wide jaw gapes and the capacity to generate more power from their jaw muscles during gouging. The observed functional trade‐off between muscle excursion/contraction velocity and muscle force suggests that primate jaw‐muscle architecture reflects evolutionary changes related to jaw movements as one of a number of functional demands imposed on the masticatory apparatus. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
17.
T1-weighted magnetic resonance imaging (MRI) in conjunction with image and segmentation analysis (i.e., the process of digitally partitioning tissues based on specified MR image characteristics) was evaluated as a noninvasive alternative for differentiating muscle fiber types and quantifying the amounts of slow, red aerobic muscle in the shortfin mako shark (Isurus oxyrinchus) and the salmon shark (Lamna ditropis). MRI-determinations of red muscle quantity and position made for the mid-body sections of three mako sharks (73.5-110 cm fork length, FL) are in close agreement (within the 95% confidence intervals) with data obtained for the same sections by the conventional dissection method involving serial cross-sectioning and volumetric analyses, and with previously reported findings for this species. The overall distribution of salmon shark red muscle as a function of body fork length was also found to be consistent with previously acquired serial dissection data for this species; however, MR imaging revealed an anterior shift in peak red muscle cross-sectional area corresponding to an increase in body mass. Moreover, MRI facilitated visualization of the intact and anatomically correct relationship of tendon linking the red muscle and the caudal peduncle. This study thus demonstrates that MRI is effective in acquiring high-resolution three-dimensional digital data with high contrast between different fish tissue types. Relative to serial dissection, MRI allows more precise quantification of the position, volume, and other details about the types of muscle within the fish myotome, while conserving specimen structural integrity.  相似文献   

18.
Myotonic dystrophy is a multisystemic disorder, due to a CTG triplet expansion at the 3'UTR of the DM1 gene encoding for myotonic dystrophy protein kinase. Recent studies indicate that decreased DMPK levels could account for part of the symptoms suggesting a role of this protein in skeletal muscle differentiation. To investigate this aspect, polyclonal antibodies were raised against two peptides of the catalytic domain and against the human full-length DMPK (DMFL). In western blots, anti-hDMFL antibody was able to detect low amounts of purified human recombinant protein and recognized the splicing isoforms in heart and stomach of overexpressing mice. In human muscle extracts, this antibody specifically recognized a protein of apparent molecular weight of 85 kDa and it specifically stained neuromuscular junctions in skeletal muscle sections. In contrast, both anti-peptide antibodies demonstrated low specificity for either denatured or native DMPK, suggesting that these two epitopes are probably cryptic sites. Using anti-hDMFL, the expression and localization of DMPK was studied in human skeletal muscle cells (SkMC). Western blot analysis indicated that the antibody recognizes a main protein of apparent MW of 75 kDa, which appears to be expressed during differentiation into myotubes. Immunolocalization showed low levels of DMPK in the cytoplasm of undifferentiated cells; during differentiation the staining became more intense and was localized to the terminal part of the cells, suggesting that DMPK might have a role in cell elongation and fusion.  相似文献   

19.
A single mutipolar receptor cell is located at the dorsal edge of the lateral internal dorsal muscle in each abdominal segment of the locust (Locusta migratoria). Muscle and receptor cell form the abdominal muscle receptor organ. The receptor cell monitors length changes in the intersegmental muscle, and as a consequence also detects the length of an abdominal segment (cuticule and intersegmental membrane).The muscle receptor organ responds in a phasictonic fashion. The phasic component encodes the rate of change in the stimulus independent from the prevailing length of the muscle receptor organ. The tonic component monitors the absolute length of the muscle.Stimulation of a single muscle receptor organ leads to reflex effects on the ipsilateral longitudinal muscles in at least three adjacent segments. Muscles that shorten the abdomen are activated while their extending antagonists receive reduced activity.The reflex activation of the muscles is polysynaptic. Monosynaptic connections between the receptor and the motoneurones were not found.We identified an interneurone that receives monosynaptic input from the muscle receptor organs in at least three adjacent segments. The interneurone excites motorneurones to the longitudinal muscles of the next posterior segment.Abbreviations aMROII abdominal muscle receptor interneurone 1 - AS3 third abdominal segment - AS4 fourth abdominal segment - AS5 fifth abdominal segment - AS6 sixth abdominal segment - EPSP excitatory postsynaptic potential - MN median nerve - MR multipolar receptor cell - MRO muscle receptor organ - N1 tergal nerve - N2 sternal nerve  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号