首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
BackgroundAesculin (AES), an effective component of Cortex fraxini, is a hydroxycoumarin glucoside that has diverse biological properties. The nucleotide-binding domain leucine-rich repeat-containing receptor, pyrin domain-containing 3 (NLRP3) inflammasome has been heavily interwoven with the development of myocardial ischemia/reperfusion injury (MIRI). Nevertheless, it remains unclear whether AES makes a difference to the changes of the NLRP3 inflammasome in MIRI.PurposeWe used rats that were subjected to MIRI and neonatal rat cardiomyocytes (NRCMs) that underwent oxygen-glucose deprivation/restoration (OGD/R) process to investigate what impacts AES exerts on MIRI and the NLRP3 inflammasome activation.MethodsThe establishment of MIRI model in rats was conducted using the left anterior descending coronary artery ligation for 0.5 h ischemia and then untying the knot for 4 h of reperfusion. After reperfusion, AES were administered intraperitoneally using 10 and 30 mg/kg doses. We evaluated the development of reperfusion ventricular arrhythmias, hemodynamic changes, infarct size, and the biomarkers in myocardial injury. The inflammatory mediators and pyroptosis were also assessed. AES at the concentrations of 1, 3, and 10 μM were imposed on the NRCMs immediately before the restoration process. We also determined the cell viability and cell death in the NRCMs exposed to OGD/R insult. Furthermore, we also analyzed the levels of proteins that affect the NLRP3 inflammasome activation, pyroptosis, and the AKT serine/threonine kinase (Akt)/glycogen synthase kinase 3 beta (GSK3β)/nuclear factor-kappa B (NF-κB) signaling pathway via western blotting.ResultsWe found that AES notably attenuated reperfusion arrhythmias and myocardia damage, improved the hemodynamic function, and ameliorated the inflammatory response and pyroptosis of cardiomyocytes in rats and NRCMs. Additionally, AES reduced the NLRP3 inflammasome activation in rats and NRCMs. AES also enhanced the phosphorylation of Akt and GSK3β, while suppressing the phosphorylation of NF-κB. Moreover, the allosteric Akt inhibitor, MK-2206, abolished the AES-mediated cardioprotection and the NLRP3 inflammasome suppression.ConclusionsThese findings indicate that AES effectively protected cardiomyocytes against MIRI by suppressing the NLRP3 inflammasome-mediated pyroptosis, which may relate to the upregulated Akt activation and disruption of the GSK3β/NF-κB pathway.  相似文献   

3.
Summary The response of Nicotiana tabacum to tentoxin (chlorosis) is inherited with chloroplasts. N. tabacum var. Xanthi, a tentoxin-resistant line, was used to pollinate tentoxin-sensitive N. tabacum line 92, an alloplasmic male-sterile line containing N. undulata plastids. The seeds were mutagenized with nitrosomethylurea and germinated in the presence of tentoxin. Two percent of the seedlings had green sectors in their first true leaves. These plants were grown to maturity under non-selective conditions. Homogeneous tentoxin-resistant lines were obtained in the third generation. DNA analysis indicated, however, that selection for paternal plastids, rather than mutagenesis of maternal ones, had occurred in the tentoxin-resistant progeny. Mitochondria, which were not under selection pressure, were inherited maternally as expected. Inheritance of tentoxin-resistant paternal plastids did not require seed mutagenesis. Normally germinated seedlings that were kept under tentoxin selection consistently produced a low level of resistant green sectors in their first true leaves. Thus, normal, low-frequency transmission of paternal plastids in N. tabacum can be directly revealed by using tentoxin.  相似文献   

4.
5.
6.
The gene coding for the M r 26000 chain of the human CD3 (T3) antigen/T-cell antigen receptor complex was mapped to chromosome band 11q23 by using a cDNA clone (pJ6T3 -2), by in situ hybridization to metaphase chromosomes and by Southern blot analysis of a panel of human-rodent somatic cell hybrids. The mouse homolog, here termed Cdg-3, was mapped to chromosome 9 using the mouse cDNA clone pB10.AT3 -1 and a panel of mouse-hamster somatic cell hybrids. Similar locations for the CD3 genes have been described previously. Thus, the corporate results indicate that the CD3 and genes have remained together since they duplicated about 200 million years ago.  相似文献   

7.
The dimerization of 3α-hydroxysteroid dehydrogenase/carbonyl reductase was studied by interrupting the salt bridge interactions between D249 and R167 in the dimeric interface. Substitution of alanine, lysine and serine for D249 decreased catalytic efficiency 30, 1400 and 1.4-fold, and lowered the melting temperature 6.9, 5.4 and 7.6 °C, respectively. The mutated enzymes have the dimeric species but the equilibrium between monomer and dimer for these mutants varies from each other, implying that these residues might contribute differently to the dimer stability. Thermal and urea-induced unfolding profiles for wild-type and mutant enzymes appeared as a two-state transition and three-state transition, respectively. In addition, mutation on D249 breaks the salt bridges and causes different effects on the loss of enzymatic activity for D249A, D249K and D249S mutants in the urea-induced unfolding profiles. Hence, D249 at the dimeric interface in 3α-HSD/CR is essential for conformational stability, oligomeric integrity and enzymatic activity.  相似文献   

8.
9.
10.
In addition to its original application for treating tuberculosis, rifampicin has multiple potential neuroprotective effects in chronic neurodegenerative diseases including Parkinson’s disease (PD) and Alzheimer’s disease. Inflammatory reactions and the PI3K/Akt pathway are strongly implicated in dopaminergic neuronal death in PD. This study aims to investigate whether rifampicin protects rotenone-lesioned SH-SY5Y cells via regulating PI3K/Akt/GSK-3β/CREB pathway. Rotenone-treated SH-SY5Y cells were used as the cell model to investigate the neuroprotective effects of rifampicin. Cell viability and apoptosis of SH-SY5Y cells were determined by CCK-8 assay and flow cytometry, respectively. The expression of Akt, p-Akt, GSK-3β, p-GSK-3β, CREB and p-CREB were measured by Western blot. Our results showed that the cell viability and level of phospho-CREB significantly decreased in SH-SY5Y cells exposed to rotenone when compared to the control group. Both the cell viability and the expression of phospho-CREB in cells pretreated with rifampicin were higher than those of cells exposed to rotenone alone. Moreover, pretreatment of SH-SY5Y cells with rifampicin enhanced phosphorylation of Akt and suppressed activity of GSK-3β. The addition of LY294002, a PI3K inhibitor, could suppress phosphorylation of Akt and CREB and activate GSK-3β, resulting in abolishment of neuroprotective effects of rifampicin on cells exposed to rotenone. Rifampicin provides neuroprotection against dopaminergic degeneration, partially via the PI3K/Akt/GSK-3β/CREB signaling pathway. These findings suggest that rifampicin could be an effective and promising neuroprotective candidate for treating PD.  相似文献   

11.
12.
13.
Fibulin-3 is an extracellular matrix glycoprotein that is present in elastic tissue and involved in carcinoma development. Previous studies have indicated that fibulin-3 may affect skeletal development, cartilage, and osteoarthritis (OA). This study aims to investigate the function of fibulin-3 on chondrocytes under tumor necrosis factor alpha (TNF-α) stimulation and in murine OA models, and explore the possible mechanism. It was found that fibulin-3 was increased in the cartilage of OA models and in the chondrogenic cells ATDC5 stimulated by TNF-α. Fibulin-3 promoted the proliferation of ATDC5 cells both in the presence and absence of TNF-α. Moreover, overexpression of fibulin-3 suppressed the chondrogenic and hypertrophic differentiation of ATDC5 cells, while knockdown of fibulin-3 caused the opposite effect. Mechanistically, fibulin-3 partially suppressed the activation of TGF-β/Smad3 signaling by inhibiting the phosphorylation of Smad3. SIS3, a Smad3 inhibitor, decreased the chondrogenesis of articular cartilages in OA models, and partially reversed the chondrogenic differentiation of ATDC5 cells caused by knockdown of fibulin-3 in the presence of TNF-α. Furthermore, co-immunoprecipitation (Co-IP) showed that fibulin-3 could only interact with TGF-β type I receptor (TβRI), although overexpression of fibulin-3 reduced the protein levels of both TβRI and TβRII. In conclusion, this study indicates that fibulin-3 modulates the chondrogenic differentiation of ATDC5 cells in inflammation partially via TGF-β/Smad3 signaling pathway.  相似文献   

14.
15.
We have previously reported that spectrin increases dramatically in amount and is assembled into the cytoskeleton in differentiating keratinocytes both in vitro and in vivo (Zhao et al., PLoS ONE 6 (12) (2011) e28267). We demonstrate here that extracellular calcium (Ca2+) enhances differentiation of keratinocytes and that this is associated with increased spectrin expression and formation of a spectrin-based cytoskeleton. While Retinoic acid (RA) also enhanced keratinocyte differentiation, it abrogated the spectrin-based cytoskeleton in keratinocytes. Furthermore, RA substantially inhibited expression of both Src and PI3K-p85α and consequently the amounts of specific phosphorylation of both of these proteins. RA also enhanced AKT expression and dramatically induced phosphorylation of AKT(Thr308), accompanied by phosphorylation of both PKCδ(Thr505) and β-adducin(Ser662) and upregulated cyclin D2 and down-regulated cyclin B1. On the other hand, Ca2+ overcame the inhibitory effects of RA on expression of Src, PI3K-p85α and cyclin B1 by maintaining high levels of phosphorylation of both Src(Tyr527) and PI3K-p85α and preventing phosphorylation of AKT(Thr308), PKCδ(Thr505) and β-adducin(Ser662). These data highlight the importance of Ca2+ in both spectrin expression and the organizational integrity of the spectrin-based cytoskeleton in differentiating keratinocytes and assist in elucidating the signalling pathways involved.  相似文献   

16.
17.
Phosphorylated tau was found to be regulated after cerebral ischemia and linked to high risk for the development of post-stroke dementia. Our previous study showed that ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, decreased tau phosphorylation in Alzheimer model. As an extending study, here we investigated whether Rd could reduce tau phosphorylation and sequential cognition impairment after ischemic stroke. Sprague–Dawley rats were subjected to focal cerebral ischemia. The tau phosphorylation of rat brains were analyzed following ischemia by Western blot and animal cognitive functions were examined by Morris water maze and Novel object recognition task. Ischemic insults increased the levels of phosphorylated tau protein at Ser199/202 and PHF-1 sites and caused animal memory deficits. Rd treatment attenuated ischemia-induced enhancement of tau phosphorylation and ameliorated behavior impairment. Furthermore, we revealed that Rd inhibited the activity of Glycogen synthase kinase-3β (GSK-3β), the most important kinase involving tau phosphorylation, but enhanced the activity of protein kinase B (PKB/AKT), a key kinase suppressing GSK-3β activity. Moreover, we found that LY294002, an antagonist for phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway, abolished the inhibitory effect of Rd on GSK-3β activity and tau phosphorylation. Taken together, our findings provide the first evidence that Rd may reduce cerebral ischemia-induced tau phosphorylation via the PI3K/AKT/GSK-3β pathway.  相似文献   

18.
A new natural product, 3β-acetoxydrimenin was isolated from the petrol extract of the leaves of Drimys winteri which also contains the known compounds safrol, drimenol and polygodial. The structure of the new compound was determined by chemical and spectroscopic methods.  相似文献   

19.
The reactions of the triangulo-cluster [Pt3(μ-CO)3(PtBu3)3] with activated olefins and alkynes have been examined under various conditions. At low temperature, cluster fragmentation occurs yielding the Pt(0) complexes [Pt(CO)(PtBu3)(olefin)] (olefin = maleic anhydride and maleimide), while di(tert-butyl)acetylenedicarboxilate reacts quantitatively giving the dinuclear Pt(0) complex [Pt2(CO)2(PtBu3)2(μ-η22-tBuO2CCCCO2tBu)]. At higher temperature and in the presence of alkyne in large excess, the latter dimer converts quantitatively to the monomers [Pt(CO)(PtBu3)(alkyne)] (alkyne = CF3CCCF3 and tBuO2CCCCO2tBu). The stereochemistry of these complexes has been established by NMR and IR measurements. The structure of [Pt(CO)(PtBu3)(CF3CCCF3)] was confirmed by X-ray diffraction analysis.  相似文献   

20.
Lin  Xiaohui  Chen  Hongbin  Chen  Manli  Li  Ting  Lai  Yongxing  Lin  Longzai  Lin  Peiqiang  Liu  Ji  Zhang  Yixian  Chen  Ronghua  Du  Houwei  Jiang  Xinhong  Liu  Nan 《Molecular and cellular biochemistry》2021,476(5):2193-2201

Background: Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) is a potential therapy for cerebral ischemia. However, the underlying protective mechanism remains undetermined. Here, we tested the hypothesis that transplantation of BMSCs via intravenous injection can alleviate neurological functional deficits through activating PI3K/AKT signaling pathway after cerebral ischemia in rats.

Methods: A cerebral ischemic rat model was established by the 2 h middle cerebral artery occlusion (MCAO). Twenty-four hours later, BMSCs (1?×?106 in 1 ml PBS) from SD rats were injected into the tail vein. Neurological function was evaluated by modified neurological severity score (mNSS) and modified adhesive removal test before and on d1, d3, d7, d10 and d14 after MCAO. Protein expressions of AKT, GSK-3β, CRMP-2 and GAP-43 were detected by Western-bolt. NF-200 was detected by immunofluorescence.

Results: BMSCs transplantation did not only significantly improve the mNSS score and the adhesive-removal somatosensory test after MCAO, but also increase the density of NF-200 and the expression of p-AKT, pGSK-3β and GAP-43, while decrease the expression of pCRMP-2. Meanwhile, these effects can be suppressed by LY294002, a specific inhibitor of PI3K/AKT.

Conclusion: These data suggest that transplantation of BMSCs could promote axon growth and neurological deficit recovery after MCAO, which was associated with activation of PI3K/AKT /GSK-3β/CRMP-2 signaling pathway.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号